Package: brulee Check: whether the namespace can be unloaded cleanly New result: WARNING *** caught segfault *** address 0x2d180, cause 'memory not mapped' Traceback: 1: cpp_lantern_init(file.path(torch_install_path(), "lib")) 2: lantern_start() 3: doTryCatch(return(expr), name, parentenv, handler) 4: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 5: tryCatchList(expr, classes, parentenv, handlers) 6: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 7: fun(libname, pkgname) 8: doTryCatch(return(expr), name, parentenv, handler) 9: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10: tryCatchList(expr, classes, parentenv, handlers) 11: tryCatch(fun(libname, pkgname), error = identity) 12: runHook(".onLoad", env, package.lib, package) 13: loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]) 14: namespaceImport(ns, loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]), from = package) 15: loadNamespace("brulee") 16: withCallingHandlers(expr, message = function(c) if (inherits(c, classes)) tryInvokeRestart("muffleMessage")) 17: suppressMessages(loadNamespace("brulee")) An irrecoverable exception occurred. R is aborting now ... Segmentation fault Package: innsight Check: whether package can be installed New result: ERROR Installation failed. Package: lambdaTS Check: whether the package can be loaded with stated dependencies New result: WARNING *** caught segfault *** address 0x45f26, cause 'memory not mapped' Traceback: 1: dyn.load(file, DLLpath = DLLpath, ...) 2: library.dynam(lib, package, package.lib) 3: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 4: asNamespace(ns) 5: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 6: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 7: asNamespace(ns) 8: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 9: loadNamespace(package, lib.loc) 10: doTryCatch(return(expr), name, parentenv, handler) 11: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12: tryCatchList(expr, classes, parentenv, handlers) 13: tryCatch({ ns <- loadNamespace(package, lib.loc) env <- attachNamespace(ns, pos = pos, deps, exclude, include.only)}, error = function(e) { P <- if (!is.null(cc <- conditionCall(e))) paste(" in", deparse(cc)[1L]) else "" msg <- gettextf("package or namespace load failed for %s%s:\n %s", sQuote(package), P, conditionMessage(e)) if (logical.return && !quietly) message(paste("Error:", msg), domain = NA) else stop(msg, call. = FALSE, domain = NA)}) 14: library(lambdaTS) An irrecoverable exception occurred. R is aborting now ... Segmentation fault It looks like this package (or one of its dependent packages) has an unstated dependence on a standard package. All dependencies must be declared in DESCRIPTION. See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’ manual. Package: luz Check: whether the package can be unloaded cleanly New result: WARNING *** caught bus error *** address 0x7f902a8a89e8, cause 'non-existent physical address' Traceback: 1: cpp_lantern_init(file.path(torch_install_path(), "lib")) 2: lantern_start() 3: doTryCatch(return(expr), name, parentenv, handler) 4: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 5: tryCatchList(expr, classes, parentenv, handlers) 6: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 7: fun(libname, pkgname) 8: doTryCatch(return(expr), name, parentenv, handler) 9: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10: tryCatchList(expr, classes, parentenv, handlers) 11: tryCatch(fun(libname, pkgname), error = identity) 12: runHook(".onLoad", env, package.lib, package) 13: loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]) 14: namespaceImport(ns, loadNamespace(i, c(lib.loc, .libPaths()), versionCheck = vI[[i]]), from = package) 15: loadNamespace(package, lib.loc) 16: doTryCatch(return(expr), name, parentenv, handler) 17: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 18: tryCatchList(expr, classes, parentenv, handlers) 19: tryCatch({ ns <- loadNamespace(package, lib.loc) env <- attachNamespace(ns, pos = pos, deps, exclude, include.only)}, error = function(e) { P <- if (!is.null(cc <- conditionCall(e))) paste(" in", deparse(cc)[1L]) else "" msg <- gettextf("package or namespace load failed for %s%s:\n %s", sQuote(package), P, conditionMessage(e)) if (logical.return && !quietly) message(paste("Error:", msg), domain = NA) else stop(msg, call. = FALSE, domain = NA)}) 20: library(luz) 21: withCallingHandlers(expr, message = function(c) if (inherits(c, classes)) tryInvokeRestart("muffleMessage")) 22: suppressMessages(library(luz)) An irrecoverable exception occurred. R is aborting now ... Bus error Package: madgrad Check: for code/documentation mismatches New result: WARNING *** caught bus error *** address 0x7fd97c6a89e8, cause 'non-existent physical address' Traceback: 1: cpp_lantern_init(file.path(torch_install_path(), "lib")) 2: lantern_start() 3: doTryCatch(return(expr), name, parentenv, handler) 4: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 5: tryCatchList(expr, classes, parentenv, handlers) 6: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 7: fun(libname, pkgname) 8: doTryCatch(return(expr), name, parentenv, handler) 9: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10: tryCatchList(expr, classes, parentenv, handlers) 11: tryCatch(fun(libname, pkgname), error = identity) 12: runHook(".onLoad", env, package.lib, package) 13: loadNamespace(name) 14: doTryCatch(return(expr), name, parentenv, handler) 15: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16: tryCatchList(expr, classes, parentenv, handlers) 17: tryCatch(loadNamespace(name), error = function(e) { tr <- Sys.getenv("_R_NO_REPORT_MISSING_NAMESPACES_") if (tr == "false" || (where != "" && !nzchar(tr))) { warning(gettextf("namespace %s is not available and has been replaced\nby .GlobalEnv when processing object %s", sQuote(name)[1L], sQuote(where)), domain = NA, call. = FALSE, immediate. = TRUE) if (nzchar(Sys.getenv("_R_CALLS_MISSING_NAMESPACES_"))) print(sys.calls()) } .GlobalEnv}) 18: .Internal(getRegisteredNamespace(name)) %||% tryCatch(loadNamespace(name), error = function(e) { tr <- Sys.getenv("_R_NO_REPORT_MISSING_NAMESPACES_") if (tr == "false" || (where != "" && !nzchar(tr))) { warning(gettextf("namespace %s is not available and has been replaced\nby .GlobalEnv when processing object %s", sQuote(name)[1L], sQuote(where)), domain = NA, call. = FALSE, immediate. = TRUE) if (nzchar(Sys.getenv("_R_CALLS_MISSING_NAMESPACES_"))) print(sys.calls()) } .GlobalEnv }) 19: ..getNamespace(c("torch", "0.16.0"), "") 20: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::7") 21: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::6") 22: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::5") 23: get(f, envir = code_env) 24: FUN(X[[i]], ...) 25: lapply(x, f) 26: unlist(lapply(x, f)) 27: Filter(function(f) { f <- get(f, envir = code_env) typeof(f) == "closure"}, objects_in_code) 28: tools::codoc(package = "madgrad") An irrecoverable exception occurred. R is aborting now ... Bus error Package: RGAN Check: R code for possible problems New result: NOTE *** caught bus error *** address 0x7ff24fbb83b0, cause 'non-existent physical address' Traceback: 1: cpp_lantern_init(file.path(torch_install_path(), "lib")) 2: lantern_start() 3: doTryCatch(return(expr), name, parentenv, handler) 4: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 5: tryCatchList(expr, classes, parentenv, handlers) 6: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 7: fun(libname, pkgname) 8: doTryCatch(return(expr), name, parentenv, handler) 9: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10: tryCatchList(expr, classes, parentenv, handlers) 11: tryCatch(fun(libname, pkgname), error = identity) 12: runHook(".onLoad", env, package.lib, package) 13: loadNamespace(name) 14: doTryCatch(return(expr), name, parentenv, handler) 15: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 16: tryCatchList(expr, classes, parentenv, handlers) 17: tryCatch(loadNamespace(name), error = function(e) { tr <- Sys.getenv("_R_NO_REPORT_MISSING_NAMESPACES_") if (tr == "false" || (where != "" && !nzchar(tr))) { warning(gettextf("namespace %s is not available and has been replaced\nby .GlobalEnv when processing object %s", sQuote(name)[1L], sQuote(where)), domain = NA, call. = FALSE, immediate. = TRUE) if (nzchar(Sys.getenv("_R_CALLS_MISSING_NAMESPACES_"))) print(sys.calls()) } .GlobalEnv}) 18: .Internal(getRegisteredNamespace(name)) %||% tryCatch(loadNamespace(name), error = function(e) { tr <- Sys.getenv("_R_NO_REPORT_MISSING_NAMESPACES_") if (tr == "false" || (where != "" && !nzchar(tr))) { warning(gettextf("namespace %s is not available and has been replaced\nby .GlobalEnv when processing object %s", sQuote(name)[1L], sQuote(where)), domain = NA, call. = FALSE, immediate. = TRUE) if (nzchar(Sys.getenv("_R_CALLS_MISSING_NAMESPACES_"))) print(sys.calls()) } .GlobalEnv }) 19: ..getNamespace(c("torch", "0.16.0"), "") 20: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::7") 21: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::18") 22: (function (n) { if (existsInFrame(n, envenv)) envenv[[n]] else { e <- mkenv() envenv[[n]] <- e key <- env[[n]] ekey <- if (is.list(key)) key$eagerKey else key data <- lazyLoadDBfetch(ekey, datafile, compressed, envhook) parent.env(e) <- data$enclos %||% emptyenv() list2env(data$bindings, e) if (!is.null(data$attributes)) attributes(e) <- data$attributes if (!is.null(data$isS4) && data$isS4) .Internal(setS4Object(e, TRUE, TRUE)) if (is.list(key)) { expr <- quote(lazyLoadDBfetch(KEY, datafile, compressed, envhook)) .Internal(makeLazy(names(key$lazyKeys), key$lazyKeys, expr, parent.env(environment()), e)) } if (!is.null(data$locked) && data$locked) .Internal(lockEnvironment(e, FALSE)) e }})("env::17") 23: as.list.environment(env, all.names = TRUE, sorted = TRUE) 24: as.list(env, all.names = TRUE, sorted = TRUE) 25: find_bad_closures(code_env) 26: tools:::.check_depdef(package = "RGAN", WINDOWS = FALSE) An irrecoverable exception occurred. R is aborting now ... Bus error Package: SEMdeep Check: whether the package can be loaded with stated dependencies New result: WARNING Loading required package: SEMgraph Loading required package: igraph Loading required package: methods Attaching package: ‘igraph’ The following object is masked from ‘package:base’: union Loading required package: lavaan This is lavaan 0.6-19 lavaan is FREE software! Please report any bugs. Attaching package: ‘SEMgraph’ The following object is masked from ‘package:lavaan’: parameterEstimates *** caught segfault *** address 0x2d190, cause 'memory not mapped' Traceback: 1: cpp_torch_generator() 2: methods$initialize(NULL, NULL, ...) 3: Generator$new() 4: torch_generator() 5: doTryCatch(return(expr), name, parentenv, handler) 6: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 7: tryCatchList(expr, classes, parentenv, handlers) 8: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 9: fun(libname, pkgname) 10: doTryCatch(return(expr), name, parentenv, handler) 11: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 12: tryCatchList(expr, classes, parentenv, handlers) 13: tryCatch(fun(libname, pkgname), error = identity) 14: runHook(".onLoad", env, package.lib, package) 15: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 16: asNamespace(ns) 17: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 18: loadNamespace(package, lib.loc) 19: doTryCatch(return(expr), name, parentenv, handler) 20: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 21: tryCatchList(expr, classes, parentenv, handlers) 22: tryCatch({ ns <- loadNamespace(package, lib.loc) env <- attachNamespace(ns, pos = pos, deps, exclude, include.only)}, error = function(e) { P <- if (!is.null(cc <- conditionCall(e))) paste(" in", deparse(cc)[1L]) else "" msg <- gettextf("package or namespace load failed for %s%s:\n %s", sQuote(package), P, conditionMessage(e)) if (logical.return && !quietly) message(paste("Error:", msg), domain = NA) else stop(msg, call. = FALSE, domain = NA)}) 23: library(SEMdeep) An irrecoverable exception occurred. R is aborting now ... Segmentation fault It looks like this package (or one of its dependent packages) has an unstated dependence on a standard package. All dependencies must be declared in DESCRIPTION. See section ‘The DESCRIPTION file’ in the ‘Writing R Extensions’ manual. Package: shrinkGPR Check: whether package can be installed New result: ERROR Installation failed. Package: spinner Check: tests New result: ERROR Running ‘testthat.R’ [359s/225s] Running the tests in ‘tests/testthat.R’ failed. Complete output: > # This file is part of the standard setup for testthat. > # It is recommended that you do not modify it. > # > # Where should you do additional test configuration? > # Learn more about the roles of various files in: > # * https://r-pkgs.org/tests.html > # * https://testthat.r-lib.org/reference/test_package.html#special-files > > library(testthat) > library(spinner) > > test_check("spinner") epoch: 10 Train loss: 0.7296587 Val loss: 0.7658037 epoch: 20 Train loss: 0.6312472 Val loss: 0.8938044 epoch: 30 Train loss: 0.7966303 Val loss: 0.7577983 early stop at epoch: 35 Train loss: 0.7187584 Val loss: 0.8340319 epoch: 10 Train loss: 0.7772701 Val loss: 0.522902 epoch: 20 Train loss: 0.7762595 Val loss: 0.6553538 epoch: 30 Train loss: 0.8441178 Val loss: 0.6257916 epoch: 40 Train loss: 0.7924368 Val loss: 0.6765536 early stop at epoch: 48 Train loss: 0.8264863 Val loss: 0.6216179 epoch: 10 Train loss: 0.619444 Val loss: 0.4355841 epoch: 20 Train loss: 0.7106468 Val loss: 0.5221128 epoch: 30 Train loss: 0.7101115 Val loss: 0.6332979 epoch: 40 Train loss: 0.6813248 Val loss: 0.7437328 epoch: 50 Train loss: 0.6665376 Val loss: 0.2543085 epoch: 60 Train loss: 0.6605672 Val loss: 0.6042317 early stop at epoch: 67 Train loss: 0.6442814 Val loss: 0.8981792 epoch: 10 Train loss: 0.7050684 Val loss: 0.1291418 epoch: 20 Train loss: 0.763199 Val loss: 0.110771 epoch: 30 Train loss: 0.7050818 Val loss: 0.1807121 epoch: 40 Train loss: 0.7658291 Val loss: 0.08044621 epoch: 50 Train loss: 0.7072362 Val loss: 0.12575 epoch: 60 Train loss: 0.7938306 Val loss: 0.0174212 epoch: 70 Train loss: 0.7374686 Val loss: 0.2247893 epoch: 80 Train loss: 0.7310981 Val loss: 0.1976047 epoch: 90 Train loss: 0.7156397 Val loss: 0.1985154 epoch: 100 Train loss: 0.7261627 Val loss: 0.06746987 time: 65.122 sec elapsed epoch: 10 Train loss: 0.8482533 Val loss: 0.7808273 epoch: 20 Train loss: 0.7843667 Val loss: 0.7722629 epoch: 30 Train loss: 0.8268018 Val loss: 0.7261776 epoch: 40 Train loss: 0.7526438 Val loss: 0.6383763 early stop at epoch: 49 Train loss: 0.8314447 Val loss: 0.7491331 epoch: 10 Train loss: 0.7253362 Val loss: 0.7813281 epoch: 20 Train loss: 0.7149699 Val loss: 0.7636326 epoch: 30 Train loss: 0.7335743 Val loss: 0.7338508 early stop at epoch: 34 Train loss: 0.6761243 Val loss: 0.7929927 epoch: 10 Train loss: 0.6933863 Val loss: 0.6721683 epoch: 20 Train loss: 0.6706426 Val loss: 0.8345279 epoch: 30 Train loss: 0.7205679 Val loss: 0.7347966 early stop at epoch: 38 Train loss: 0.6348966 Val loss: 0.8029219 epoch: 10 Train loss: 0.8269185 Val loss: 0.6528622 epoch: 20 Train loss: 0.7081278 Val loss: 0.6500619 epoch: 30 Train loss: 0.755761 Val loss: 0.798498 epoch: 40 Train loss: 0.6888255 Val loss: 0.7146953 epoch: 50 Train loss: 0.7767602 Val loss: 0.646698 epoch: 60 Train loss: 0.7186184 Val loss: 0.730222 epoch: 70 Train loss: 0.6903644 Val loss: 0.7449238 epoch: 80 Train loss: 0.7790839 Val loss: 0.5977558 epoch: 90 Train loss: 0.7214634 Val loss: 0.6243414 epoch: 100 Train loss: 0.7338631 Val loss: 0.6404924 time: 47.139 sec elapsed epoch: 10 Train loss: 0.2859265 Val loss: 0.2068727 epoch: 20 Train loss: 0.2984724 Val loss: 0.3236572 epoch: 30 Train loss: 0.270416 Val loss: 0.4357646 early stop at epoch: 30 Train loss: 0.270416 Val loss: 0.4357646 epoch: 10 Train loss: 0.3585813 Val loss: 0.3153649 epoch: 20 Train loss: 0.2972764 Val loss: 0.2153269 epoch: 30 Train loss: 0.3488365 Val loss: 0.4321858 early stop at epoch: 30 Train loss: 0.3488365 Val loss: 0.4321858 epoch: 10 Train loss: 0.2341588 Val loss: 0.2794321 epoch: 20 Train loss: 0.2065745 Val loss: 0.1932212 epoch: 30 Train loss: 0.2426571 Val loss: 0.1447038 early stop at epoch: 36 Train loss: 0.268917 Val loss: 0.4349511 epoch: 10 Train loss: 0.3582795 Val loss: 0.2833864 epoch: 20 Train loss: 0.2889148 Val loss: 0.4885568 epoch: 30 Train loss: 0.3235161 Val loss: 0.4665593 early stop at epoch: 30 Train loss: 0.3235161 Val loss: 0.4665593 time: 25.945 sec elapsed epoch: 10 Train loss: 0.6142692 Val loss: 0.534342 epoch: 20 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 30 Train loss: 0.6142692 Val loss: 0.5428722 epoch: 40 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 50 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 60 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 70 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 80 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 90 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 100 Train loss: 0.6142692 Val loss: 0.5131603 epoch: 10 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 20 Train loss: 0.7049654 Val loss: 0.6535779 epoch: 30 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 40 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 50 Train loss: 0.7049654 Val loss: 0.6494278 epoch: 60 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 70 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 80 Train loss: 0.7049654 Val loss: 0.652582 epoch: 90 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 100 Train loss: 0.7049654 Val loss: 0.6577361 epoch: 10 Train loss: 0.7025672 Val loss: 0.6688986 epoch: 20 Train loss: 0.7095096 Val loss: 0.6763295 epoch: 30 Train loss: 0.6872968 Val loss: 0.6763295 early stop at epoch: 31 Train loss: 0.6872968 Val loss: 0.7268884 time: 17.7 sec elapsed epoch: 10 Train loss: 0.07086422 Val loss: 0.1295418 epoch: 20 Train loss: 0.07086422 Val loss: 0.150863 epoch: 30 Train loss: 0.07086422 Val loss: 0.1370502 early stop at epoch: 30 Train loss: 0.07086422 Val loss: 0.1370502 epoch: 10 Train loss: 0.1184543 Val loss: 0.2327785 epoch: 20 Train loss: 0.1407779 Val loss: 0.1184543 epoch: 30 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 40 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 50 Train loss: 0.1184543 Val loss: 0.3209745 epoch: 60 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 70 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 80 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 90 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 100 Train loss: 0.1184543 Val loss: 0.1184543 epoch: 10 Train loss: 0.115987 Val loss: 0.3021982 epoch: 20 Train loss: 0.2227834 Val loss: 0.07547683 epoch: 30 Train loss: 0.222783 Val loss: 0.07168996 early stop at epoch: 39 Train loss: 0.07168997 Val loss: 0.3695349 time: 12.083 sec elapsed epoch: 10 Train loss: 0.8840502 Val loss: 0.7528918 epoch: 20 Train loss: 0.8840502 Val loss: 0.7386833 epoch: 30 Train loss: 0.8840502 Val loss: 0.8115932 epoch: 40 Train loss: 0.8840502 Val loss: 0.7679083 epoch: 50 Train loss: 0.8840502 Val loss: 0.7460439 epoch: 60 Train loss: 0.8840502 Val loss: 0.7271828 epoch: 70 Train loss: 0.8840502 Val loss: 0.7271828 epoch: 80 Train loss: 0.8840502 Val loss: 0.7627334 early stop at epoch: 87 Train loss: 0.8976642 Val loss: 0.7493047 epoch: 10 Train loss: 0.8616574 Val loss: 0.7825515 epoch: 20 Train loss: 0.8616574 Val loss: 0.7337028 epoch: 30 Train loss: 0.8496215 Val loss: 0.8155159 early stop at epoch: 37 Train loss: 0.8891432 Val loss: 0.7763019 epoch: 10 Train loss: 0.8155231 Val loss: 0.5132446 epoch: 20 Train loss: 0.8155231 Val loss: 0.5116741 epoch: 30 Train loss: 0.8290172 Val loss: 0.5206639 epoch: 40 Train loss: 0.8155231 Val loss: 0.6798337 epoch: 50 Train loss: 0.8155231 Val loss: 0.5661802 epoch: 60 Train loss: 0.8270854 Val loss: 0.5020163 epoch: 70 Train loss: 0.8317779 Val loss: 0.5016666 epoch: 80 Train loss: 0.8343502 Val loss: 0.5764117 epoch: 90 Train loss: 0.8241311 Val loss: 0.5016666 epoch: 100 Train loss: 0.8155231 Val loss: 0.5016666 time: 20.515 sec elapsed epoch: 10 Train loss: 0.6843129 Val loss: 0.9026864 epoch: 20 Train loss: 0.7129108 Val loss: 0.8759718 epoch: 30 Train loss: 0.6363723 Val loss: 0.9134344 early stop at epoch: 33 Train loss: 0.6145143 Val loss: 0.9189636 epoch: 10 Train loss: 0.9203368 Val loss: 0.8369982 epoch: 20 Train loss: 0.9103207 Val loss: 0.8256086 epoch: 30 Train loss: 0.9054757 Val loss: 0.8447726 early stop at epoch: 36 Train loss: 0.9308423 Val loss: 0.850892 epoch: 10 Train loss: 0.8853705 Val loss: 0.413904 epoch: 20 Train loss: 0.8903883 Val loss: 0.4568593 epoch: 30 Train loss: 0.8836291 Val loss: 0.4770255 epoch: 40 Train loss: 0.8990043 Val loss: 0.5015495 epoch: 50 Train loss: 0.872561 Val loss: 0.2868867 epoch: 60 Train loss: 0.8548701 Val loss: 0.4388559 epoch: 70 Train loss: 0.8721351 Val loss: 0.4282742 epoch: 80 Train loss: 0.9115008 Val loss: 0.432579 epoch: 90 Train loss: 0.898841 Val loss: 0.3531144 epoch: 100 Train loss: 0.8563035 Val loss: 0.3222978 time: 29.826 sec elapsed random search: 62.433 sec elapsed [ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ] ══ Failed tests ════════════════════════════════════════════════════════════════ ── Error ('test.R:72:13'): Correct outcome format and size for base outcome3 ─── Error in `purrr::pmap(hyper_params, ~spinner(graph, target, node_labels, edge_labels, context_labels, direction = ..1, sampling = NA, threshold = 0.01, method = ..2, node_embedding_size = ..13, edge_embedding_size = ..14, context_embedding_size = ..15, update_order = ..3, n_layers = ..4, skip_shortcut = ..5, forward_layer = ..6, forward_activation = ..7, forward_drop = ..8, mode = ..9, optimization = ..10, epochs, lr = ..11, patience, weight_decay = ..12, reps, folds, holdout, verbose, seed))`: i In index: 2. Caused by error in `pmap()`: i In index: 1. Caused by error in `training_function()`: ! not enough data for training [ FAIL 1 | WARN 66 | SKIP 0 | PASS 46 ] Error: Test failures Execution halted Package: spinner Check: whether the namespace can be loaded with stated dependencies New result: WARNING *** caught segfault *** address 0x45f26, cause 'memory not mapped' Traceback: 1: dyn.load(file, DLLpath = DLLpath, ...) 2: library.dynam(lib, package, package.lib) 3: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 4: asNamespace(ns) 5: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 6: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 7: asNamespace(ns) 8: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 9: loadNamespace("spinner") 10: eval(expr) 11: eval(expr) 12: withCallingHandlers(expr, message = function(c) if (inherits(c, classes)) tryInvokeRestart("muffleMessage")) 13: suppressMessages(eval(expr)) 14: withCallingHandlers(suppressMessages(eval(expr)), warning = .whandler) 15: tools:::.load_namespace_rather_quietly("spinner") An irrecoverable exception occurred. R is aborting now ... Segmentation fault A namespace must be able to be loaded with just the base namespace loaded: otherwise if the namespace gets loaded by a saved object, the session will be unable to start. Probably some imports need to be declared in the NAMESPACE file. Package: tabnet Check: whether the package can be loaded New result: ERROR Loading this package had a fatal error status code 135 Loading log: *** caught bus error *** address 0x7faf61541f25, cause 'non-existent physical address' Traceback: 1: cpp_lantern_init(file.path(torch_install_path(), "lib")) 2: lantern_start() 3: doTryCatch(return(expr), name, parentenv, handler) 4: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 5: tryCatchList(expr, classes, parentenv, handlers) 6: tryCatch({ lantern_start() cpp_set_lantern_allocator(getOption("torch.threshold_call_gc", 4000L)) cpp_set_cuda_allocator_allocator_thresholds(getOption("torch.cuda_allocator_reserved_rate", 0.2), getOption("torch.cuda_allocator_allocated_rate", 0.8), getOption("torch.cuda_allocator_allocated_reserved_rate", 0.8)) register_lambda_function_deleter() .generator_null <<- torch_generator() .generator_null$set_current_seed(seed = sample(1e+05, 1)) .compilation_unit <<- cpp_jit_compilation_unit()}, error = function(e) { msg <- if (is.character(e$message)) e$message else "Unknown error." cli::cli_warn(c(i = "torch failed to start, restart your R session to try again.", i = "You might need to reinstall torch using {.fn install_torch}", x = msg), parent = e) FALSE}) 7: fun(libname, pkgname) 8: doTryCatch(return(expr), name, parentenv, handler) 9: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 10: tryCatchList(expr, classes, parentenv, handlers) 11: tryCatch(fun(libname, pkgname), error = identity) 12: runHook(".onLoad", env, package.lib, package) 13: loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]) 14: asNamespace(ns) 15: namespaceImportFrom(ns, loadNamespace(j <- i[[1L]], c(lib.loc, .libPaths()), versionCheck = vI[[j]]), i[[2L]], from = package) 16: loadNamespace(package, lib.loc) 17: doTryCatch(return(expr), name, parentenv, handler) 18: tryCatchOne(expr, names, parentenv, handlers[[1L]]) 19: tryCatchList(expr, classes, parentenv, handlers) 20: tryCatch({ ns <- loadNamespace(package, lib.loc) env <- attachNamespace(ns, pos = pos, deps, exclude, include.only)}, error = function(e) { P <- if (!is.null(cc <- conditionCall(e))) paste(" in", deparse(cc)[1L]) else "" msg <- gettextf("package or namespace load failed for %s%s:\n %s", sQuote(package), P, conditionMessage(e)) if (logical.return && !quietly) message(paste("Error:", msg), domain = NA) else stop(msg, call. = FALSE, domain = NA)}) 21: library(tabnet) An irrecoverable exception occurred. R is aborting now ... Bus error