test_that("norm works", { a <- torch_arange(0, 8, dtype = torch_float()) - 4 b <- a$reshape(c(3, 3)) expect_equal_to_tensor(linalg_norm(a), linalg_norm(b)) expect_equal_to_tensor(linalg_norm(a), linalg_norm(b, ord = "fro")) expect_equal_to_r(linalg_norm(a, Inf), 4) expect_equal_to_r(linalg_norm(a, -Inf), 0) expect_equal_to_r(linalg_norm(b, Inf), 9) expect_equal_to_r(linalg_norm(b, -Inf), 2) expect_equal_to_r(linalg_norm(a, 1), 20) expect_equal_to_r(linalg_norm(b, 1), 7) expect_equal_to_r(linalg_norm(a, -1), 0) expect_equal_to_r(linalg_norm(b, -1), 6) expect_equal_to_tensor(linalg_norm(a, 2), linalg_norm(b)) expect_equal_to_r(linalg_norm(a, -2), 0) expect_equal_to_r(linalg_norm(a, -3), 0) expect_equal_to_r(linalg_norm(a, -2), 0) expect_equal(linalg_norm(b, dim = 2)$numel(), 3) expect_equal(linalg_norm(b, dim = 1)$numel(), 3) expect_true(linalg_norm(a, dtype = torch_double())$dtype == torch_double()) }) test_that("vector norm works", { a <- torch_arange(0, 8, dtype = torch_float()) - 4 b <- a$reshape(c(3, 3)) expect_equal_to_tensor(linalg_vector_norm(a), linalg_vector_norm(b)) }) test_that("matrix norm", { a <- torch_arange(0, 8, dtype = torch_float())$reshape(c(3, 3)) expect_equal_to_r(linalg_matrix_norm(a, ord = -1), 9) b <- a$expand(c(2, -1, -1)) expect_equal(linalg_matrix_norm(b)$numel(), 2) expect_equal(linalg_matrix_norm(b, dim = c(1, 3))$numel(), 3) }) test_that("det works", { a <- torch_randn(3, 3) expect_tensor_shape(linalg_det(a), integer(0)) a <- torch_randn(3, 3, 3) expect_tensor_shape(linalg_det(a), c(3)) }) test_that("slog det", { a <- torch_randn(3, 3) expect_length(linalg_slogdet(a), 2) expect_tensor_shape(linalg_slogdet(a)[[1]], integer(0)) expect_tensor_shape(linalg_slogdet(a)[[2]], integer(0)) }) test_that("cond works", { example <- torch_tensor(rbind(c(1., 0, -1), c(0, 1, 0), c(1, 0, 1))) expect_equal_to_r(linalg_cond(example), 1.4142, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, "fro"), 3.1623, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, "nuc"), 9.2426, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, Inf), 2, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, -Inf), 1, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, 1), 2, tolerance = 1e-4) expect_equal_to_r(linalg_cond(example, -1), 1, tolerance = 1e-4) }) test_that("matrix_rank works", { a <- torch_eye(10) expect_equal_to_r(linalg_matrix_rank(a), 10) expect_warning( expect_equal_to_r(linalg_matrix_rank(a, tol = torch_scalar_tensor(0.001)), 10) ) expect_equal_to_r(linalg_matrix_rank(a, hermitian = TRUE), 10) expect_warning( expect_equal_to_r(linalg_matrix_rank(a, tol = torch_scalar_tensor(0.001), hermitian = TRUE), 10) ) expect_warning( expect_equal_to_r(linalg_matrix_rank(a, tol = 0.0001), 10) ) expect_warning( expect_equal_to_r(linalg_matrix_rank(a, tol = torch_scalar_tensor(0, dtype = torch_float64())), 10) ) expect_equal_to_r(linalg_matrix_rank(a, atol = 0.1), 10) expect_equal_to_r(linalg_matrix_rank(a, rtol = 0.1), 10) }) test_that("cholesky", { a <- torch_eye(10) expect_equal_to_tensor(linalg_cholesky(a), a) }) test_that("qr", { a <- torch_tensor(rbind(c(12., -51, 4), c(6, 167, -68), c(-4, 24, -41))) qr <- linalg_qr(a) expect_equal_to_tensor(torch_mm(qr[[1]], qr[[2]])$round(), a) expect_equal_to_tensor(torch_mm(qr[[1]]$t(), qr[[1]])$round(), torch_eye(3)) }) test_that("eig works", { a <- torch_randn(2, 2) wv <- linalg_eig(a) expect_length(wv, 2) }) test_that("eigvals", { a <- torch_randn(2, 2) w <- linalg_eigvals(a) expect_equal(w$shape, 2) }) test_that("linalg_eigh", { a <- torch_randn(2, 2) expect_length(linalg_eigh(a), 2) expect_length(linalg_eigh(a, UPLO = "U"), 2) }) test_that("eigvalsh", { a <- torch_randn(2, 2) expect_tensor_shape(linalg_eigvalsh(a), 2) }) test_that("linalg_svd", { a <- torch_randn(5, 3) r <- linalg_svd(a, full_matrices = FALSE) expect_length(r, 3) expect_tensor_shape(r[[1]], c(5, 3)) expect_tensor_shape(r[[2]], 3) expect_tensor_shape(r[[3]], c(3, 3)) }) test_that("svdvals", { A <- torch_randn(5, 3) S <- linalg_svdvals(A) expect_tensor_shape(S, 3) r <- linalg_svd(A) expect_equal_to_tensor(S, r[[2]], tolerance = 1e-6) }) test_that("solve", { A <- torch_randn(3, 3) b <- torch_randn(3) x <- linalg_solve(A, b) expect_equal_to_tensor(torch_matmul(A, x), b, tolerance = 1e-5) }) test_that("lstsq", { A <- torch_tensor(rbind(c(10, 2, 3), c(3, 10, 5), c(5, 6, 12)))$unsqueeze(1) # shape (1, 3, 3) B <- torch_stack(list( rbind(c(2, 5, 1), c(3, 2, 1), c(5, 1, 9)), rbind(c(4, 2, 9), c(2, 0, 3), c(2, 5, 3)) ), dim = 1) # shape (2, 3, 3) X <- linalg_lstsq(A, B) # A is broadcasted to shape (2, 3, 3) expect_length(X, 4) }) test_that("linalg_inv", { X <- torch_randn(2, 2) Xi <- linalg_inv(X) expect_equal_to_tensor(torch_matmul(X, Xi), torch_eye(2), tolerance = 1e-6) }) test_that("pinv", { A <- torch_randn(3, 5) B <- torch_randn(3, 3) expect_equal_to_tensor( torch_matmul(linalg_pinv(A), B), linalg_lstsq(A, B)$solution, tolerance = 1e-6 ) A <- torch_randn(3, 3, 5) B <- torch_randn(3, 3, 3) expect_equal_to_tensor( torch_bmm(linalg_pinv(A), B), linalg_lstsq(A, B)$solution, tolerance = 1e-6 ) expect_warning(linalg_pinv(A, rcond = 1e-15)) expect_warning(linalg_pinv(A, rtol = 0, atol = 1e-7), regexp=NA) }) test_that("matrix power", { A <- torch_randn(3, 3) expect_equal_to_tensor( linalg_matrix_power(A, 0), torch_eye(3) ) expect_equal_to_tensor( linalg_matrix_power(A, 1), A ) }) test_that("multi dot", { expect_equal_to_r( linalg_multi_dot(list(torch_tensor(c(1, 2)), torch_tensor(c(2, 3)))), 8 ) }) test_that("householder_product", { A <- torch_randn(2, 2) h_tau <- torch_geqrf(A) Q <- linalg_householder_product(h_tau[[1]], h_tau[[2]]) expect_equal_to_tensor(Q, linalg_qr(A)[[1]]) }) test_that("tensorinv", { A <- torch_eye(4 * 6)$reshape(c(4, 6, 8, 3)) Ainv <- linalg_tensorinv(A, ind = 3) Ainv$shape B <- torch_randn(4, 6) expect_true(torch_allclose(torch_tensordot(Ainv, B), linalg_tensorsolve(A, B))) A <- torch_randn(4, 4) Atensorinv <- linalg_tensorinv(A, 2) Ainv <- linalg_inv(A) expect_true(torch_allclose(Atensorinv, Ainv)) }) test_that("tensorsolve", { torch_manual_seed(204929) A <- torch_eye(2 * 3 * 4)$reshape(c(2 * 3, 4, 2, 3, 4)) B <- torch_randn(2 * 3, 4) X <- linalg_tensorsolve(A, B) X$shape expect_true( torch_allclose(torch_tensordot(A, X, dims = X$ndim), B) ) A <- torch_randn(6, 4, 4, 3, 2) B <- torch_randn(4, 3, 2) X <- linalg_tensorsolve(A, B, dims = c(1, 3)) A <- A$permute(c(2, 4, 5, 1, 3)) expect_true( torch_allclose(torch_tensordot(A, X, dims = X$ndim), B, atol = 1e-5) ) }) test_that("cholesky ex", { A <- torch_randn(2, 2) out <- linalg_cholesky_ex(A) expect_length(out, 2) expect_named(out, c("L", "info")) }) test_that("linalg_inv_ex", { A <- torch_randn(3, 3) out <- linalg_inv_ex(A) expect_equal_to_tensor( out$inverse, linalg_inv(A) ) }) test_that("linalg_solve_triangular works", { a <- torch_randn(3,3)$triu_() b <- torch_randn(3,4) expect_error( x <- linalg_solve_triangular(a, b, upper = TRUE), regexp = NA ) })