test_that("result_type", { x <- torch_result_type( tensor1 = torch_tensor(c(1, 2), dtype = torch_int()), tensor2 = 1 ) expect_true(x == torch_float()) x <- torch_result_type( tensor1 = torch_tensor(c(1, 2), dtype = torch_int()), tensor2 = torch_tensor(1:2) ) expect_true(x == torch_long()) x <- torch_result_type( tensor1 = 1, tensor2 = torch_tensor(1:2) ) expect_true(x == torch_float()) x <- torch_result_type( tensor1 = 1, tensor2 = 2L ) expect_true(x == torch_float()) }) test_that("torch_multi_margin_loss", { x <- torch_randn(3, 2) y <- torch_tensor(c(1, 2, 3), dtype = torch_long()) expect_error(torch_multi_margin_loss(x, y)) x <- torch_randn(3, 3) expect_tensor(torch_multi_margin_loss(x, y)) y <- torch_tensor(c(0, 1, 2)) expect_error(torch_multi_margin_loss(x, y)) }) test_that("torch_topk", { x <- torch_arange(1, 15)$view(c(5, 3)) expect_equal_to_r( torch_topk(x, 2)[[2]], matrix(c(3, 2), nrow = 5, ncol = 2, byrow = TRUE) ) expect_equal_to_r( x$topk(2)[[2]], matrix(c(3, 2), nrow = 5, ncol = 2, byrow = TRUE) ) }) test_that("torch_narrow", { x <- torch_tensor(matrix(1:9, ncol = 3, byrow = TRUE)) expect_equal_to_tensor(torch_narrow(x, 1, 1, 2), x[1:2, ]) expect_equal_to_tensor(x$narrow(1, 1, 2), x[1:2, ]) expect_equal_to_tensor(x$narrow_copy(1, 1, 2), x[1:2, ]) }) test_that("atleast_1d", { x <- torch_randn(2) expect_equal(torch_atleast_1d(x)$ndim, 1) y <- torch_scalar_tensor(1) expect_equal(y$ndim, 0) expect_equal(torch_atleast_1d(y)$ndim, 1) z <- torch_atleast_1d(list(x, y, torch_randn(2, 2))) expect_equal(z[[1]]$ndim, 1) expect_equal(z[[2]]$ndim, 1) expect_equal(z[[3]]$ndim, 2) }) test_that("atleast_2d", { x <- torch_randn(2) expect_equal(torch_atleast_2d(x)$ndim, 2) y <- torch_scalar_tensor(1) expect_equal(y$ndim, 0) expect_equal(torch_atleast_2d(y)$ndim, 2) z <- torch_atleast_2d(list(x, y, torch_randn(2, 2, 2))) expect_equal(z[[1]]$ndim, 2) expect_equal(z[[2]]$ndim, 2) expect_equal(z[[3]]$ndim, 3) }) test_that("atleast_3d", { x <- torch_randn(2) expect_equal(torch_atleast_3d(x)$ndim, 3) y <- torch_scalar_tensor(1) expect_equal(y$ndim, 0) expect_equal(torch_atleast_3d(y)$ndim, 3) z <- torch_atleast_3d(list(x, y, torch_randn(2, 2, 2, 2))) expect_equal(z[[1]]$ndim, 3) expect_equal(z[[2]]$ndim, 3) expect_equal(z[[3]]$ndim, 4) }) test_that("kaiser_window", { expect_tensor(torch_kaiser_window(10, TRUE, beta = 12)) expect_tensor(torch_kaiser_window(10, TRUE)) expect_tensor(torch_kaiser_window(10, FALSE)) expect_tensor(torch_kaiser_window(10, TRUE, dtype = torch_float64())) x <- torch_kaiser_window(10, TRUE, dtype = torch_float64()) expect_true(x$dtype == torch_float64()) x <- torch_kaiser_window(10, TRUE, layout = torch_strided()) expect_tensor(x) x <- torch_kaiser_window(10, TRUE, requires_grad = TRUE) expect_true(x$requires_grad) }) test_that("vander", { x <- torch_tensor(c(1, 2, 3, 5)) expect_tensor(torch_vander(x)) y <- torch_vander(x, N = 3) expect_tensor(y) expect_equal(y$size(2), 3) y <- torch_vander(x, N = 3, increasing = TRUE) expect_equal_to_r(y[4, 3], 25) }) test_that("movedim", { x <- torch_randn(3, 2, 1) expect_tensor_shape(torch_movedim(x, 1, 2), c(2, 3, 1)) expect_tensor_shape(torch_movedim(x, c(1, 2), c(2, 3)), c(1, 3, 2)) expect_tensor_shape(x$movedim(1, 2), c(2, 3, 1)) expect_tensor_shape(x$movedim(c(1, 2), c(2, 3)), c(1, 3, 2)) }) test_that("norm", { x <- torch_rand(2, 3) expect_tensor(torch_norm(x)) expect_tensor(torch_norm(x, p = 2)) expect_tensor(torch_norm(x, p = 2, dtype = torch_float64())) expect_tensor_shape(torch_norm(x, dim = 1), 3) expect_tensor_shape(torch_norm(x, dim = 2), 2) expect_tensor_shape(torch_norm(x, dim = 2, dtype = torch_float64()), 2) x <- torch_rand(2, 3, names = c("W", "H")) expect_error( torch_norm(x, dim = "W"), regexp = "not yet supported with named tensors" ) expect_error( torch_norm(x, dim = "H"), regexp = "not yet supported with named tensors" ) x <- torch_rand(2, 3) expect_tensor(x$norm()) expect_tensor(x$norm(p = 2)) expect_tensor(x$norm(p = 2, dtype = torch_float64())) expect_tensor_shape(torch_norm(x, dim = 1), 3) expect_tensor_shape(torch_norm(x, dim = 2), 2) expect_tensor_shape(torch_norm(x, dim = 2, dtype = torch_float64()), 2) }) test_that("hann_window", { expect_error( torch_hann_window(NULL), class = "value_error" ) expect_tensor_shape(torch_hann_window(window_length = 10), 10) }) test_that("stft", { x <- torch_stft( input = torch::torch_ones(3000), n_fft = 400, center = FALSE, onesided = TRUE ) expect_tensor_shape(x, c(201, 27, 2)) expect_equal_to_r(x[1, , ], cbind(rep(400, 27), rep(0, 27))) expect_equal_to_r(x[51, , ], cbind(rep(0, 27), rep(0, 27))) x <- torch::torch_stft( input = torch::torch_ones(3000), n_fft = 400, center = TRUE ) expect_tensor_shape(x, c(201, 31, 2)) expect_equal_to_r(x[1, , ], cbind(rep(400, 31), rep(0, 31))) expect_equal_to_r(x[51, , ], cbind(rep(0, 31), rep(0, 31))) x <- torch::torch_stft( input = torch::torch_ones(3000), n_fft = 400, center = TRUE, return_complex = TRUE ) expect_equal(x$shape, c(201, 31)) expect_true(x$dtype == torch_complex(real = 1, imag = 1)$dtype) x <- torch_stft( input = torch::torch_ones(3000), n_fft = 400, window = torch_ones(400), center = FALSE ) expect_tensor_shape(x, c(201, 27, 2)) expect_equal_to_r(x[1, , ], cbind(rep(400, 27), rep(0, 27))) expect_equal_to_r(x[51, , ], cbind(rep(0, 27), rep(0, 27))) }) test_that("torch_one_hot", { expect_tensor_shape(torch_one_hot(torch_tensor(1L)), c(1, 1)) expect_tensor_shape(torch_one_hot(torch_tensor(c(1L, 2L))), c(2, 2)) expect_error(torch_one_hot(torch_tensor(0L))) }) test_that("torch_split", { x <- torch_tensor(1:5) expect_length(torch_split(x, 2), 3) expect_length(torch_split(x, c(2, 3)), 2) expect_length(x$split(2), 3) expect_length(x$split(c(2, 3)), 2) }) test_that("torch_nonzero", { x <- torch_tensor(c(0, 1, 2, 0, 3)) expect_equal_to_r(torch_nonzero(x), matrix(c(2L, 3L, 5L), ncol = 1)) expect_equal_to_r(x$nonzero(), matrix(c(2L, 3L, 5L), ncol = 1)) o <- torch_nonzero(x, as_list = TRUE) expect_length(o, 1) expect_equal_to_r(o[[1]], c(2L, 3L, 5L)) o <- x$nonzero(as_list = TRUE) expect_length(o, 1) expect_equal_to_r(o[[1]], c(2L, 3L, 5L)) x <- torch_tensor(matrix(c(0, 1, 0, 1, 1, 0), nrow = 2)) expect_equal(nrow(torch_nonzero(x)), 3) expect_equal(nrow(x$nonzero()), 3) o <- torch_nonzero(x, as_list = TRUE) expect_length(o, 2) o <- x$nonzero(as_list = TRUE) expect_length(o, 2) x <- torch_tensor(c(0, 0)) expect_equal(nrow(torch_nonzero(x)), 0) expect_equal(nrow(x$nonzero()), 0) expect_equal(nrow(torch_nonzero(x, as_list = TRUE)[[1]]), 0) expect_equal(nrow(x$nonzero(as_list = TRUE)[[1]]), 0) skip_if_cuda_not_available() x <- torch_tensor(c(0, 1, 2, 0, 3), device = "cuda") expect_equal_to_r(torch_nonzero(x), matrix(c(2L, 3L, 5L), ncol = 1)) }) test_that("normal works", { x <- torch_normal(0, 1, size = c(2, 2)) expect_tensor_shape(x, c(2, 2)) expect_true(x$dtype == torch_float()) x <- torch_normal(0, 1, size = c(2, 2), dtype = torch_float64()) expect_true(x$dtype == torch_float64()) x <- torch_normal(torch_zeros(2, 2), torch_ones(c(2, 2))) expect_tensor_shape(x, c(2, 2)) x <- torch_normal(torch_zeros(2, 2), 1) expect_tensor_shape(x, c(2, 2)) x <- torch_normal(1, torch_zeros(2, 2)) expect_tensor_shape(x, c(2, 2)) x <- torch_normal(mean = torch_zeros(2, 2)) expect_tensor_shape(x, c(2, 2)) x <- torch_normal(std = torch_zeros(2, 2)) expect_tensor_shape(x, c(2, 2)) x <- torch_normal(size = list(2, 2)) expect_tensor_shape(x, c(2, 2)) expect_error(torch_normal(torch_zeros(2), 1, c(2, 2)), class = "value_error") expect_error(torch_normal(1, torch_zeros(2), c(2, 2)), class = "value_error") expect_error(torch_normal(1, torch_zeros(2), dtype = torch_float64()), class = "value_error") }) test_that("torch_where", { t <- torch_arange(1,6) x <- torch_where(t < 3) expect_equal(x[[1]] %>% as.numeric(), c(1,2)) t <- torch_arange(1,6)$view(c(2,3)) x <- torch_where(t < 3) expect_equal(x[[1]] %>% as.numeric(), c(1,1)) expect_equal(x[[2]] %>% as.numeric(), c(1,2)) }) test_that("polygamma works", { a <- torch_tensor(c(1, 0.5)) r <- torch_polygamma(1, a) expect_equal_to_r(a, c(1, 0.5)) expect_equal_to_r(r, c(1.64493405818939, 4.93480205535889)) }) test_that("broadcast_shapes", { expect_equal(torch_broadcast_shapes(c(2, 2), c(2, 2)), c(2, 2)) expect_equal(torch_broadcast_shapes(c(2, 1), c(2, 2)), c(2, 2)) expect_error(torch_broadcast_shapes(c(2, 3), c(2, 2))) }) test_that("tensordot works", { t1 <- torch_rand(10, 2, 3) t2 <- torch_rand(3, 3, 5) expect_tensor_shape(torch_tensordot(t1, t2, 1L), c(10, 2, 3, 5)) expect_tensor_shape(torch_tensordot(t1, t2, list(3, 1)), c(10, 2, 3, 5)) }) test_that("multinomial works", { x <- torch_tensor(1) expect_equal_to_tensor( torch_multinomial(x, 10, replacement = TRUE), torch_ones(10) ) }) test_that("blackman_window", { expect_tensor_shape(torch_blackman_window(window_length = 2), 2) }) test_that("torch_fft_fftfreq", { expect_tensor_shape(torch_fft_fftfreq(5), 5) })