test_that("save tensor", { fname <- tempfile(fileext = "pt") x <- torch_randn(10, 10) torch_save(x, fname) y <- torch_load(fname) expect_equal_to_tensor(x, y) }) test_that("save a module", { fname <- tempfile(fileext = "pt") Net <- nn_module( initialize = function() { self$linear <- nn_linear(10, 1) self$norm <- nn_batch_norm1d(1) }, forward = function(x) { x <- self$linear(x) x <- self$norm(x) x } ) net <- Net() torch_save(net, fname) reloaded_net <- torch_load(fname) gc() x <- torch_randn(100, 10) expect_equal_to_tensor(net(x), reloaded_net(x)) }) test_that("save more complicated module", { Net <- nn_module( "Net", initialize = function() { self$conv1 <- nn_conv2d(1, 32, 3, 1) self$conv2 <- nn_conv2d(32, 64, 3, 1) self$dropout1 <- nn_dropout2d(0.25) self$dropout2 <- nn_dropout2d(0.5) self$fc1 <- nn_linear(9216, 128) self$fc2 <- nn_linear(128, 10) }, forward = function(x) { x <- self$conv1(x) x <- nnf_relu(x) x <- self$conv2(x) x <- nnf_relu(x) x <- nnf_max_pool2d(x, 2) x <- self$dropout1(x) x <- torch_flatten(x, start_dim = 2) x <- self$fc1(x) x <- nnf_relu(x) x <- self$dropout2(x) x <- self$fc2(x) output <- nnf_log_softmax(x, dim = 1) output } ) fname <- tempfile(fileext = ".pt") net <- Net() torch_save(net, fname) reloaded_net <- torch_load(fname) gc() expect_equal_to_tensor( net$conv1$parameters$weight, reloaded_net$conv1$parameters$weight ) expect_equal_to_tensor( net$conv1$parameters$bias, reloaded_net$conv1$parameters$bias ) expect_equal_to_tensor( net$conv2$parameters$weight, reloaded_net$conv2$parameters$weight ) expect_equal_to_tensor( net$conv2$parameters$bias, reloaded_net$conv2$parameters$bias ) expect_equal_to_tensor( net$fc1$parameters$weight, reloaded_net$fc1$parameters$weight ) expect_equal_to_tensor( net$fc1$parameters$bias, reloaded_net$fc1$parameters$bias ) expect_equal_to_tensor( net$fc2$parameters$weight, reloaded_net$fc2$parameters$weight ) expect_equal_to_tensor( net$fc2$parameters$bias, reloaded_net$fc2$parameters$bias ) net$train(FALSE) reloaded_net$train(FALSE) x <- torch_randn(10, 1, 28, 28) expect_equal_to_tensor(net(x), reloaded_net(x)) }) test_that("save alexnet like model", { net <- nn_module( "Net", initialize = function() { self$features <- nn_sequential( nn_conv2d(3, 5, kernel_size = 11, stride = 4, padding = 2), nn_relu() ) self$avgpool <- nn_max_pool2d(c(6, 6)) self$classifier <- nn_sequential( nn_dropout(), nn_linear(10, 10), nn_relu(), nn_dropout() ) }, forward = function(x) { x <- self$features(x) x <- self$avgpool(x) x <- torch_flatten(x, start_dim = 2) x <- self$classifier(x) } ) model <- net() fname <- tempfile(fileext = ".pt") torch_save(model, fname) m <- torch_load(fname) pars <- model$parameters r_pars <- m$parameters for (i in seq_along(pars)) { expect_equal_to_tensor(pars[[i]], r_pars[[i]]) } }) test_that("load a state dict created in python", { # the state dict was create in python with # ones = torch.ones(3, 5) # twos = torch.ones(3, 5) * 2 # value = {'ones': ones, 'twos': twos} # torch.save(value, "assets/state_dict.pth", _use_new_zipfile_serialization=True) dict <- load_state_dict(test_path("assets/state_dict.pth")) expect_equal(names(dict), c("ones", "twos")) expect_equal_to_tensor(dict$ones, torch_ones(3, 5)) expect_equal_to_tensor(dict$twos, torch_ones(3, 5) * 2) }) test_that("can load a state dict that contains an ordered dict", { dict <- load_state_dict(test_path("assets/ordered_dict.pt")) expect_equal(names(dict), c("weight", "bias")) expect_tensor_shape(dict$weight, c(10, 10)) expect_tensor_shape(dict$bias, c(10)) }) test_that("Can load a torch v0.2.1 model", { skip_on_os("windows") tmp <- tempfile("model", fileext = "pt") download.file("https://storage.googleapis.com/torch-lantern-builds/testing-models/v0.2.1.pt", destfile = tmp, mode = "wb") model <- torch_load(tmp) x <- torch_randn(32, 1, 28, 28) expect_error(o <- model(x), regexp = NA) expect_tensor_shape(o, c(32, 10)) }) test_that("requires_grad for tensors is maintained", { x <- torch_randn(10, 10, requires_grad = TRUE) tmp <- tempfile("model", fileext = "pt") torch_save(x, tmp) y <- torch_load(tmp) expect_true(y$requires_grad) x <- torch_randn(10, 10, requires_grad = FALSE) tmp <- tempfile("model", fileext = "pt") torch_save(x, tmp) y <- torch_load(tmp) expect_false(y$requires_grad) }) test_that("requires_grad of parameters is correct", { model <- nn_linear(10, 10) tmp <- tempfile("model", fileext = "pt") torch_save(model, tmp) model2 <- torch_load(tmp) expect_true(model2$bias$requires_grad) model <- nn_linear(10, 10) model$bias$requires_grad_(FALSE) expect_false(model$bias$requires_grad) tmp <- tempfile("model", fileext = "pt") torch_save(model, tmp) model2 <- torch_load(tmp) expect_false(model2$bias$requires_grad) }) test_that("can save with a NULL device", { skip_if_cuda_not_available() model <- nn_linear(10, 10)$cuda() tmp <- tempfile("model", fileext = "pt") torch_save(model, tmp) model <- torch_load(tmp, device = NULL) expect_equal(model$weight$device$type, "cuda") }) test_that("save on cuda and load on cpu", { skip_if_cuda_not_available() model <- nn_linear(10, 10)$cuda() expect_equal(model$weight$device$type, "cuda") tmp <- tempfile("model", fileext = "pt") torch_save(model, tmp) mod <- torch_load(tmp) expect_equal(mod$weight$device$type, "cpu") }) test_that("save on cuda and load on cuda", { skip_if_cuda_not_available() model <- nn_linear(10, 10)$cuda() expect_equal(model$weight$device$type, "cuda") tmp <- tempfile("model", fileext = "pt") torch_save(model, tmp) mod <- torch_load(tmp, device = "cuda") expect_equal(mod$weight$device$type, "cuda") }) test_that("can save and load from lists", { l <- list( torch_tensor(1), a = torch_tensor(2), b = list( x = torch_tensor(3), y = 4 ), c = 5 ) tmp <- tempfile() torch_save(l, tmp) rm(l) gc() l <- torch_load(tmp) expect_equal_to_tensor(l[[1]], torch_tensor(1)) expect_equal_to_tensor(l$a, torch_tensor(2)) expect_equal_to_tensor(l$b$x, torch_tensor(3)) expect_equal(l$b$y, 4) expect_equal(l$c, 5) }) test_that("can use torch_serialize", { model <- nn_linear(10, 10) x <- torch_randn(10, 10) ser <- torch_serialize(model) pred <- model(x) rm(model); gc(); model2 <- torch_load(ser) pred2 <- model2(x) expect_true(torch_allclose(pred, pred2)) expect_error(regexp = "matched", { ser <- torch_serialize(model2, path = tempfile()) }) })