context("optim-sgd") test_that("optim_sgd works", { expect_optim_works(optim_sgd, list(lr = 0.1)) expect_optim_works(optim_sgd, list(lr = 0.1, momentum = 0.1)) expect_optim_works(optim_sgd, list(lr = 0.1, momentum = 0.1, nesterov = TRUE)) expect_optim_works(optim_sgd, list(lr = 0.1, weight_decay = 0.1)) expect_optim_works(optim_sgd, list(lr = 0.1, momentum = 0.1, dampening = 0.2)) }) test_that("optim have classes", { expect_equal( class(optim_sgd), c("optim_sgd", "torch_optimizer_generator") ) opt <- optim_sgd(lr = 0.1, list(torch_tensor(1, requires_grad = TRUE))) expect_equal( class(opt), c("optim_sgd", "torch_optimizer", "R6") ) expect_true(is_optimizer(opt)) }) test_that("copy state between optimizers corecctly", { # start with a tensor and make one step in the optimize x <- torch_tensor(1, requires_grad = TRUE) opt <- optim_adam(x, lr = 0.1) (2*x)$backward() opt$step() opt$zero_grad() # now copy that tensor and its optimizer and make a step with_no_grad({ y <- torch_empty(1, requires_grad = TRUE)$copy_(x) }) opt2 <- optim_adam(y, lr = 0.1) opt2$load_state_dict(opt$state_dict()) (2*y)$backward() opt2$step() opt2$state_dict() # another step in the original optimizer (2*x)$backward() opt$step() opt$zero_grad() expect_equal_to_tensor(x, y) })