test_that("Sparsemax", { m <- nn_contrib_sparsemax(dim = -1) x <- rbind( c(0.01, 0.01, 0.01, 0.97), c(0.001, 0.01, 0.01, 0.97), c(0.01, 0.01, 0.01, 5) ) x_t <- torch_tensor(x) pred <- m(x_t) expect_tensor_shape(m(x_t), c(3, 4)) expect_equal_to_tensor(m(x_t)[1, ], x_t[1, ], tolerance = 1e-6) expect_equal_to_tensor(m(x_t)[2, ], torch_tensor(c(0.0033, 0.0123, 0.0123, 0.9723)), tolerance = 1e-4) expect_equal_to_tensor(m(x_t)[3, ], torch_tensor(c(0, 0, 0, 1)), tolerance = 1e-5) m <- nn_contrib_sparsemax(dim = -1) x <- rbind( c(0.01, 0.01, 0.01, 0.97), c(0.001, 0.01, 0.01, 0.97), c(0.01, 0.01, 0.01, 5) ) x_t <- torch_tensor(x, requires_grad = TRUE) y <- torch_tensor(c(4L, 4L, 4L)) l <- nnf_nll_loss(m(x_t), y) l$backward() expect_equal_to_tensor( x_t$grad, torch_tensor( rbind( c(0.0833, 0.0833, 0.0833, -0.2500), c(0.0833, 0.0833, 0.0833, -0.2500), c(0.0000, 0.0000, 0.0000, 0.0000) ) ), tolerance = 1e-4 ) }) test_that("Multihead attention works", { attn1 <- nn_multihead_attention(embed_dim = 10, num_heads = 1) attn2 <- nn_multihead_attention(embed_dim = 10, num_heads = 1, batch_first = TRUE) attn2$load_state_dict(attn1$state_dict()) q <- torch_randn(5, 32, 10) k <- torch_randn(5, 32, 10) v <- torch_randn(5, 32, 10) res1 <- attn1(q, k, v) res2 <- attn2(q$transpose(2,1), k$transpose(2,1), v$transpose(2,1)) expect_equal_to_tensor(res1[[1]], res2[[1]]$transpose(2,1)) expect_equal_to_tensor(res1[[2]], res2[[2]]) # comparing to python results. torch::torch_manual_seed(1) attn1 <- nn_multihead_attention(embed_dim = 2, num_heads = 1) x <- torch_randn(1,1,2) out <- attn1(x, x, x) expect_equal_to_r(out[[1]][1,1,], c(0.0736, -0.0599), tol = 1e-4) expect_equal_to_r(out[[2]][1,1,], c(1), tol = 1e-4) expect_equal_to_r(attn1$in_proj_weight[1,], c(-0.1782, 0.4406), tol = 1e-4) expect_equal_to_r(attn1$out_proj$weight[1,], c(0.3643, -0.3121), tol = 1e-4) # raise error when embed_dim is not divisible by num_heads. expect_error(nn_multihead_attention(embed_dim = 512, num_heads = 10), regexp="divisible") }) test_that("silu works", { silu <- nn_silu() input <- torch_tensor(c(-1.0, 0.0, 1.0)) expected_output <- torch_tensor(c(-0.26894142, 0.0, 0.73105858)) expect_equal_to_tensor(silu(input), expected_output) silu <- nn_silu(inplace = TRUE) out <- silu(input) expect_equal_to_tensor(input, expected_output) })