context("tmf") skip_on_cran() set.seed(407774) test_dat <- as.data.frame(cbind(c(rep(0,500),rep(1,500)), c(sort(rnorm(500,0,1)),sort(rnorm(500,1,1.5))), rbinom(1000,2,0.4), rnorm(1000,0,1))) colnames(test_dat) <- c("TR", "Y", "U", "U2") colMeans(test_dat) test_dat0 <- test_dat test_dat$Y[1:200] <- NA test_dat2 <- test_dat test_dat2$Y[1:10] <- "Oops" test_dat3 <- test_dat test_dat3$TR[1:10] <- 3 # checking TM estimate and adjusted TM estimate expect_equal(round(as.numeric(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat)$coefficients[c(1,4),1]),4), round(c(1.482352,1.032575 ),4)) # checking default 0.5 trimming when no dropout expect_equal(as.numeric(tm(Y ~ TR + U + U2, GR="TR", side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat0)$trimfrac), 0.5) # checking default adaptive trimming under dropout expect_equal(as.numeric(tm(Y ~ TR + U + U2, GR="TR", side="LOW", n_perm=1000, adj_est=FALSE, data=test_dat)$trimfrac), sum(is.na(test_dat$Y[test_dat$TR==0]))/length(which(test_dat$TR==0))) # checking error messages expect_error(tm(Y ~ TR + U + U2, GR="Trt", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat), "TR variable not in data") expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.4, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat), "Adjusted estimate can only be computed for 50% trimming") expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat2), "Y non-numeric") expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.5, side="LOW", n_perm=1000, adj_est=TRUE, data=test_dat3), "TR non-binary") expect_error(tm(Y ~ TR + U + U2, GR="TR", trF=0.3, side="LOW", n_perm=1000, adj_est=FALSE, data=test_dat), "Trimming fraction smaller than largest dropout proportion")