# Set number of data.table threads to 2 data.table::setDTthreads(threads = 2L) # Set number of collapse threads to 1 collapse::set_collapse(nthreads = 1L) testthat::test_that("Expect error", { testthat::expect_error(roll_sum(NA_character_)) testthat::expect_error(roll_mean(NA_character_)) }) testthat::test_that("Expect NA", { x <- list(NA, NA_real_, NA_integer_, NaN, Inf, -Inf) testthat::expect_identical(lapply(x, function(y) roll_sum(y, na.rm = FALSE)), lapply(1:length(x), function(x) NA_real_)) testthat::expect_identical(lapply(x, function(y) roll_mean(y, na.rm = FALSE)), lapply(1:length(x), function(x) NA_real_)) }) testthat::test_that("Expected outputs", { x <- seq(-5, 5, 0.25) testthat::expect_identical(roll_sum(x, window = length(x)), as.numeric(cumsum(x))) testthat::expect_identical(roll_mean(x, window = length(x)), as.numeric(dplyr::cummean(x))) testthat::expect_identical(roll_sum(x, window = length(x), partial = FALSE), data.table::frollsum(x, n = length(x))) testthat::expect_identical(roll_mean(x, window = length(x), partial = FALSE), data.table::frollmean(x, n = length(x))) testthat::expect_identical(roll_sum(x, window = 6, partial = FALSE), data.table::frollsum(x, n = 6)) testthat::expect_identical(roll_mean(x, window = 6, partial = FALSE), data.table::frollmean(x, n = 6)) x[sample(1:length(x), size = 10)] <- NA_real_ testthat::expect_identical(roll_sum(x, window = 5, na.rm = TRUE, partial = FALSE), data.table::frollsum(x, n = 5, na.rm = TRUE)) testthat::expect_identical(roll_sum(x, window = 5, na.rm = FALSE, partial = FALSE), data.table::frollsum(x, n = 5, na.rm = FALSE)) testthat::expect_identical(roll_mean(x, window = 5, na.rm = TRUE, partial = FALSE), data.table::frollmean(x, n = 5, na.rm = TRUE)) testthat::expect_identical(roll_mean(x, window = 5, na.rm = FALSE, partial = FALSE), data.table::frollmean(x, n = 5, na.rm = FALSE)) }) # testthat::test_that("Expected outputs2", { # flights <- nycflights13::flights # x <- flights$arr_delay # g <- flights$dest # t <- seq_along(x) # dt <- data.table::data.table(x, g, t) # # expected <- dt[, mu2 := data.table::frollmean(x, n = 5, na.rm = TRUE), # by = "g"]$mu2 # testthat::expect_true(all.equal(dt[, mu1 := roll_mean(x, g = g, window = 5, partial = FALSE)]$mu1, # expected)) # # dt[, mu1 := time_roll_mean(x, g = g, window = 5, # time = t, # close_left_boundary = TRUE, # partial = FALSE, # na.rm = TRUE)] # dt[, mu2 := slider::slide_index_mean(x, i = t, # before = 5, # complete = TRUE, # na_rm = TRUE), # by = "g"] # testthat::expect_equal(dt$mu1, dt$mu2) # dt[, mu1 := time_roll_mean(x, g = g, window = 5, # time = frowid(g), # close_left_boundary = TRUE, # partial = FALSE, # na.rm = TRUE)] # dt[, mu2 := slider::slide_index_mean(x, i = seq_along(x), # before = 5, # complete = TRUE, # na_rm = TRUE), # by = "g"] # testthat::expect_equal(dt$mu1, dt$mu2) # }) # # t <- time_seq_v2(100, Sys.Date(), time_by = lubridate::days(1)) # # t <- sample(t, size = 10^3, replace = TRUE) # # x <- rnorm(length(t)) # # t <- sort(t) # # # # With dups --------------------------------------------------------------- # # # z1 <- time_roll_mean(x, time = t, days(11), close_left_boundary = TRUE) # z2 <- slider::slide_index_mean(x, i = t, before = days(11), na_rm = TRUE, # complete = FALSE) # z3 <- time_roll_mean(x, time = t, days(11), close_left_boundary = FALSE) # z4 <- runner::mean_run(x, idx = t, k = 11) # all.equal(z1, z2) # # all.equal(z3, z4) # # # # With NA ----------------------------------------------------------------- # # # x <- cheapr::na_insert(x, prop = 0.3) # z1 <- time_roll_mean(x, time = t, days(11), close_left_boundary = TRUE) # z2 <- slider::slide_index_mean(x, i = t, before = days(11), na_rm = TRUE, # complete = FALSE) # all.equal(z1, z2) # # # # With gaps --------------------------------------------------------------- # # t <- sort(sample(t, size = 20, FALSE)) # x <- rnorm(length(t)) # z1 <- time_roll_mean(x, time = t, days(11), close_left_boundary = TRUE) # z2 <- slider::slide_index_mean(x, i = t, before = days(11), na_rm = TRUE, # complete = FALSE) # all.equal(z1, z2) # # # # With gaps and dups ------------------------------------------------------ # # t <- time_seq_v2(100, Sys.Date(), time_by = lubridate::days(1)) # t <- sort(sample(t, size = 30, TRUE)) # x <- rnorm(length(t)) # z1 <- time_roll_mean(x, time = t, days(11), close_left_boundary = TRUE) # z2 <- slider::slide_index_mean(x, i = t, before = days(11), na_rm = TRUE, # complete = FALSE) # all.equal(z1, z2) # # # By group # # # # flights2 <- nycflights13::flights %>% # fastplyr::f_arrange(time_hour) # # t <- flights2$time_hour # x <- rnorm(length(t)) # z2 <- time_roll_mean(x, dhours(2), time = t, partial = FALSE, close_left_boundary = TRUE) # z3 <- slider::slide_index_mean(x, i = t, before = dhours(2), na_rm = TRUE, # complete = TRUE) # all.equal(z2, z3) # # z1 <- flights2 %>% # # fastplyr::f_arrange(origin, dest, time_hour) %>% # fgroup_by(origin, dest) %>% # dplyr::mutate(mean = slider::slide_index_mean(arr_delay, i = time_hour, # before = lubridate::dhours(2.5), # na_rm = TRUE)) %>% # dplyr::pull(mean) # z2 <- flights2 %>% # fastplyr::add_group_id(origin, dest) %>% # dplyr::mutate(mean = time_roll_mean(arr_delay, time = time_hour, # lubridate::dhours(2.5), # close_left_boundary = TRUE, # g = group_id)) %>% # dplyr::pull(mean) # all.equal(z1, z2) testthat::test_that("simple tests", { testthat::expect_equal( time_roll_mean(c(10, 20, 30), time = lubridate::today() + lubridate::days(0:2), window = lubridate::days(1), close_left_boundary = FALSE), c(10, 20, 30)) testthat::expect_equal( time_roll_mean(c(10, 20, 30), time = lubridate::today() + lubridate::days(0:2), window = lubridate::days(1), close_left_boundary = TRUE), c(10, 15, 25)) # x <- rnorm(10^6) # t <- sample(time_seq(today(), today() + weeks(23), time_by = days(9)), # size = 10^6, TRUE) # g <- sample.int(10^5, 10^6, TRUE) # # mark(e1 = time_roll_sum(x, time = t, window = 11, g = g)) # # e2 = time_roll_sum2(x, time = t, window = 11, g = g)) # mark(e1 = time_roll_sum(x, time = t, window = 11, g = g, # close_left_boundary = TRUE), # e2 = time_roll_sum2(x, time = t, window = 11, g = g, # close_left_boundary = TRUE)) # mark(e1 = time_roll_sum(x, time = t, window = 7, g = g), # e2 = time_roll_sum2(x, time = t, window = 7, g = g)) })