### test-KMwithSE.R --- #---------------------------------------------------------------------- ## Author: Paul Blanche ## Created: Aug 11 2022 (16:40) ## Version: ## Last-Updated: Aug 12 2022 (12:08) ## By: Paul Blanche ## Update #: 21 #---------------------------------------------------------------------- ## ### Commentary: ## ### Change Log: #---------------------------------------------------------------------- ## ### Code: # {{{ Check the internal Greenwood variance computation of KM against that of prodlim test_that("Check the internal Greenwood variance computation of KM against that of prodlim",{ #-- test with Freireich data------- ResKM.1.gw <- KMwithSE(tstar=10,data=Freireich) ResKM.1.prodlim <- prodlim::prodlim(prodlim::Hist(time,status)~1,Freireich) expect_equal(ResKM.1.gw$res.full$KM, ResKM.1.prodlim$surv, tolerance=5e-10) expect_equal(sqrt(ResKM.1.gw$res.full$gw), ResKM.1.prodlim$se.surv, tolerance=5e-10) #-- test with simulated data ------- dsim <- prodlim::SimSurv(3000) ResKM.dsim.gw <- KMwithSE(tstar=10,data=dsim) ResKM.dsim.prodlim <- prodlim::prodlim(prodlim::Hist(time,status)~1,dsim) #-- expect_equal(ResKM.dsim.gw$res.full$KM, ResKM.dsim.prodlim$surv, tolerance=5e-10) # note, we need to remove the results from the last time (prodlim creates some NaN) expect_equal(sqrt(ResKM.dsim.gw$res.full$gw)[-length(ResKM.dsim.prodlim$se.surv)], ResKM.dsim.prodlim$se.surv[-length(ResKM.dsim.prodlim$se.surv)], tolerance=5e-10) }) # }}} #---------------------------------------------------------------------- ### test-KMwithSE.R ends here