library(blockCV) test_that("blockcv2rsample conversion", { # we use examples from the blockcv library for spatial blocks points <- read.csv(system.file("extdata/", "species.csv", package = "blockCV")) pa_data <- sf::st_as_sf(points, coords = c("x", "y"), crs = 7845) sb1 <- cv_spatial( x = pa_data, column = "occ", # the response column (binary or multi-class) k = 5, # number of folds size = 350000, # size of the blocks in metres selection = "random", # random blocks-to-fold iteration = 10, report = FALSE, progress = FALSE ) # find evenly dispersed folds sb1_rsample <- blockcv2rsample(sb1, pa_data) expect_true(inherits(sb1_rsample,"spatial_rset")) # load raster data path <- system.file("extdata/au/", package = "blockCV") files <- list.files(path, full.names = TRUE) covars <- terra::rast(files) #' # spatial clustering set.seed(6) sc <- cv_cluster(x = pa_data, column = "occ", # optional; name of the column with response k = 5, report = FALSE) sc_rsample <- blockcv2rsample(sc, pa_data) expect_true(inherits(sc_rsample,"spatial_rset")) #' # environmental clustering set.seed(6) ec <- cv_cluster(r = covars, # if provided will be used for environmental clustering x = pa_data, column = "occ", # optional; name of the column with response k = 5, scale = TRUE, report = FALSE) ec_rsample <- blockcv2rsample(ec, pa_data) path <- system.file("extdata/au/bio_5.tif", package = "blockCV") expect_true(inherits(ec_rsample,"spatial_rset")) # give error for unsuppored mode in blockcv covar <- terra::rast(path) nndm <- cv_nndm(x = pa_data, column = "occ", # optional r = covar, size = 350000, # size in metres no matter the CRS num_sample = 10, sampling = "regular", min_train = 0.1, plot = FALSE, report = FALSE) expect_error(blockcv2rsample(nndm, pa_data), "this function does support this object type") })