test_that("group computation", { ir = as.data.table(iris) expect_equal( iris %>% group_dt(by = Species,slice_dt(1:2)), ir[,.SD[1:2],by = Species] ) expect_equal( iris %>% group_dt(Species,filter_dt(Sepal.Length == max(Sepal.Length))), ir[,.SD[Sepal.Length == max(Sepal.Length)],by = Species] ) expect_equal( iris %>% group_dt(Species, mutate_dt(max= max(Sepal.Length)) %>% summarise_dt(sum=sum(Sepal.Length))), copy(ir)[,max:=max(Sepal.Length),by = Species][ ,.(sum=sum(Sepal.Length)),by = Species] ) }) test_that("rowwise computation",{ df <- data.table(x = 1:2, y = 3:4, z = 4:5) expect_equal( df %>% rowwise_dt( mutate_dt(m = min(c(x, y, z))) ), copy(df)[,m:=pmin(x,y,z)] ) }) test_that("use group by in tidyfst",{ # group by 1 variable a = as.data.table(iris) expect_equal( a %>% group_by_dt(Species) %>% group_exe_dt(head(1)), a[,.SD[1],by = Species], check.attributes = FALSE ) expect_equal( a %>% group_by_dt(Species) %>% group_exe_dt( head(3) %>% summarise_dt(sum = sum(Sepal.Length)) ), a[,.SD[1:3],by = Species][,.(sum=sum(Sepal.Length)),by = Species], check.attributes = FALSE ) # group by more than 1 variable mt = as.data.table(mtcars) expect_equal( mt %>% group_by_dt("cyl|am") %>% group_exe_dt( summarise_dt(mpg_sum = sum(mpg)) ), mt[,.(mpg_sum=sum(mpg)),keyby=c("cyl","am")], check.attributes = FALSE ) expect_equal( mt %>% group_by_dt("cyl|am") %>% group_exe_dt( summarise_dt(mpg_sum = sum(mpg)) ), mtcars %>% group_by_dt(cols = c("cyl","am")) %>% group_exe_dt( summarise_dt(mpg_sum = sum(mpg)) ) ) })