test_that("enet regression works", { library(dplyr) df_reg <- MASS::Boston colnames(df_reg)[1] <- "some non-syntactic name" df_cls3 <- iris df_cls2 <- iris %>% filter(Species != "setosa") m_reg <- m("enet", medv ~ ., df_reg, lambda = c(0.1), alpha = 0.1) expect_equal(nrow(coef(m_reg)), 12) expect_equal(nrow(predict(m_reg, df_reg)), 506) expect_equal(nrow(fitted(m_reg)), 506) expect_equal(nrow(resid(m_reg)), 506) expect_equal(nrow(predict(m_reg, df_reg %>% select(-medv))), 506) }) test_that("enet classification works", { library(dplyr) df_cls3 <- iris df_cls2 <- iris %>% filter(Species != "setosa") m_reg <- classify(df_cls3, Species ~ ., m("enet", lambda = c(0.1), alpha = 0.1)) expect_equal(nrow(coef(m_reg)), 14) expect_equal(nrow(predict(m_reg, df_cls3)), 450) expect_equal(nrow(fitted(m_reg)), 450) expect_equal(nrow(predict(m_reg, df_cls3 %>% select(-Species))), 450) }) test_that("enet classification (2class) works", { library(dplyr) df_cls3 <- iris df_cls2 <- iris %>% filter(Species != "virginica") m_reg <- classify(df_cls2, Species ~ ., m("enet", lambda = c(0.01), alpha = 0.1)) expect_equal(nrow(coef(m_reg)), 5) expect_equal(nrow(predict(m_reg, df_cls2)), 100) expect_equal(nrow(fitted(m_reg)), 100) expect_equal(nrow(predict(m_reg, df_cls2 %>% select(-Species))), 100) })