test_that("Input validation: negative or zero lookback throws error", { data <- tibble( date = as.Date("2020-01-01"), permno = 1, ret_excess = 0, mkt_excess = 0 ) expect_error(estimate_betas(data, "ret_excess ~ mkt_excess", -1)) expect_error(estimate_betas(data, "ret_excess ~ mkt_excess", 0)) }) test_that("Input validation: negative or zero min_obs throws error", { data <- tibble( date = as.Date("2020-01-01"), permno = 1, ret_excess = 0, mkt_excess = 0 ) expect_error(estimate_betas(data, "ret_excess ~ mkt_excess", 3, min_obs = -1)) expect_error(estimate_betas(data, "ret_excess ~ mkt_excess", 3, min_obs = 0)) }) test_that("Input validation: invalid use_furrr throws error", { data <- tibble( date = as.Date("2020-01-01"), permno = 1, ret_excess = 0, mkt_excess = 0 ) expect_error(estimate_betas(data, "ret_excess ~ mkt_excess", 3, use_furr = 0)) }) test_that("Output structure: correct column names and number of rows", { data <- tibble( date = rep(seq.Date(from = as.Date("2020-01-01"), to = as.Date("2020-12-01"), by = "month"), each = 2), permno = rep(1:2, times = 12), ret_excess = rnorm(24, 0, 0.1), mkt_excess = rnorm(24, 0, 0.1) ) result <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3)) expect_true(all(c("date", "beta_mkt_excess") %in% colnames(result))) expect_equal(nrow(result), 24) # Should match the number of unique date-permno pairs }) test_that("Correctness: Known result test", { data <- tibble( date = as.Date(c("2020-01-01", "2020-02-01", "2020-03-01")), permno = c(1, 1, 1), ret_excess = c(0.1, 0.2, 0.3), mkt_excess = c(0.1, 0.2, 0.3) ) result <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3)) expect_equal(result$beta_mkt_excess, c(NA, 1, 1)) }) test_that("Performance: Single vs multiple workers give the same result", { data <- tibble( date = rep(seq.Date(from = as.Date("2020-01-01"), to = as.Date("2020-12-01"), by = "month"), each = 2), permno = rep(1:2, times = 12), ret_excess = rnorm(24, 0, 0.1), mkt_excess = rnorm(24, 0, 0.1) ) result_single <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3)) result_multi <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3), use_furrr = TRUE) expect_equal(result_single, result_multi) }) test_that("Rolling window behavior: correct handling of boundary dates", { data <- tibble( date = seq.Date(from = as.Date("2020-01-01"), to = as.Date("2020-06-01"), by = "month"), permno = 1, ret_excess = rnorm(6, 0, 0.1), mkt_excess = rnorm(6, 0, 0.1) ) result <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3)) expect_equal(nrow(result), 6) # Check if the first couple of rows have NA values where the window size is not sufficient expect_true(all(is.na(result$beta_mkt_excess[1]))) }) test_that("Daily data test: correctly handles daily data grouped into months", { data <- tibble( date = rep(seq.Date(from = as.Date("2020-01-01"), to = as.Date("2020-12-31"), by = "day"), each = 2), permno = rep(1:2, times = 366), ret_excess = rnorm(732, 0, 0.02), mkt_excess = rnorm(732, 0, 0.02) ) data <- data %>% mutate(date = lubridate::floor_date(date, "month")) result <- estimate_betas(data, "ret_excess ~ mkt_excess", lookback = months(6)) expect_equal(nrow(result), length(unique(data$date)) * 2) # Check if rows match the expected number of date-permno combinations expect_true(all(c("date", "beta_mkt_excess") %in% colnames(result))) }) test_that("Edge case: single permno", { data <- tibble( date = seq.Date(from = as.Date("2020-01-01"), to = as.Date("2020-12-01"), by = "month"), permno = 1, ret_excess = rnorm(12, 0, 0.1), mkt_excess = rnorm(12, 0, 0.1) ) result <- estimate_betas(data, "ret_excess ~ mkt_excess", months(3)) expect_equal(nrow(result), 12) expect_true(all(c("date", "beta_mkt_excess") %in% colnames(result))) })