test_succeeds("glm_fit.tensorflow.tensor works", { skip_if_tfp_below("0.8") x <- matrix(runif(100), ncol = 2) y <- rnorm(50, mean = rowSums(x), sd = 0.2) model <- glm_fit(x, y, model = tfp$glm$Normal()) model_r <- glm(y ~ 0 + x[,1] + x[,2]) expect_equivalent(as.numeric(model[[1]]), model_r$coefficients) expect_s3_class(model, "glm_fit") model <- glm_fit(x, y, model = "Normal") model_r <- glm(y ~ 0 + x[,1] + x[,2]) expect_equivalent(as.numeric(model[[1]]), model_r$coefficients) expect_s3_class(model, "glm_fit") }) test_succeeds("glm_fit_one_step.tensorflow.tensor works", { skip_if_tfp_below("0.8") x <- matrix(runif(100), ncol = 2) y <- rnorm(50, mean = rowSums(x), sd = 0.2) model <- glm_fit(x, y, model = tfp$glm$Normal()) model_r <- glm(y ~ 0 + x[,1] + x[,2]) expect_equivalent(as.numeric(model[[1]]), model_r$coefficients) expect_s3_class(model, "glm_fit") model <- glm_fit(x, y, model = "Normal") model_r <- glm(y ~ 0 + x[,1] + x[,2]) expect_equivalent(as.numeric(model[[1]]), model_r$coefficients) expect_s3_class(model, "glm_fit") })