context("Test training methods") source("helper-utils.R") test_succeeds("train_and_evaluate() work for canned estimators", { skip_if_tensorflow_below("1.4") specs <- mtcars_regression_specs() est <- dnn_linear_combined_regressor( linear_feature_columns = specs$linear_feature_columns, dnn_feature_columns = specs$dnn_feature_columns, dnn_hidden_units = c(1L, 1L), dnn_optimizer = "Adagrad" ) tr_spec <- train_spec(input_fn = specs$input_fn, max_steps = 10) ev_spec <- eval_spec(input_fn = specs$input_fn, steps = 2) train_and_evaluate( est, train_spec = tr_spec, eval_spec = ev_spec ) }) test_succeeds("train_and_evaluate() work for custom estimators", { skip_if_tensorflow_below("1.4") input <- input_fn( object = iris, response = "Species", features = c( "Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width"), batch_size = 10L ) est <- estimator(model_fn = simple_custom_model_fn) tr_spec <- train_spec(input_fn = input, max_steps = 2) ev_spec <- eval_spec(input_fn = input, steps = 2) train_and_evaluate( est, train_spec = tr_spec, eval_spec = ev_spec ) })