context("extract methods") suppressPackageStartupMessages(library("texreg")) # Arima (stats) ---- test_that("extract Arima objects from the stats package", { testthat::skip_on_cran() set.seed(12345) m <- arima(USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1))) tr <- extract(m) expect_length(tr@coef.names, 2) expect_length(tr@coef, 2) expect_length(tr@se, 2) expect_length(tr@pvalues, 2) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 4) expect_length(tr@gof.names, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(which(tr@gof.decimal), 1:3) expect_equivalent(which(tr@pvalues < 0.05), 1:2) expect_equivalent(dim(matrixreg(m)), c(9, 2)) }) # forecast_ARIMA (forecast) ---- test_that("extract forecast_ARIMA objects from the forecast package", { testthat::skip_on_cran() skip_if_not_installed("forecast") require("forecast") set.seed(12345) air.model <- Arima(window(AirPassengers, end = 1956 + 11 / 12), order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1), period = 12), lambda = 0) tr <- extract(air.model) expect_length(tr@coef.names, 2) expect_length(tr@coef, 2) expect_length(tr@se, 2) expect_length(tr@pvalues, 2) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 5) expect_length(tr@gof.names, 5) expect_length(tr@gof.decimal, 5) expect_equivalent(which(tr@gof.decimal), 1:4) expect_equivalent(which(tr@pvalues < 0.05), 1:2) expect_equivalent(dim(matrixreg(air.model)), c(10, 2)) m1 <- arima(USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1))) m2 <- Arima(USAccDeaths, order = c(0, 1, 1), seasonal = list(order = c(0, 1, 1))) expect_s3_class(m1, "Arima") expect_s3_class(m2, "Arima") expect_s3_class(m2, "forecast_ARIMA") m <- matrixreg(list(m1, m2)) expect_equivalent(dim(m), c(10, 3)) expect_equivalent(m[2:9, 2], m[2:9, 3]) expect_equivalent(m[10, 1], "AICc") }) # bergm (Bergm) ---- test_that("extract bergm objects from the Bergm package", { testthat::skip_on_cran() suppressWarnings(skip_if_not_installed("Bergm", minimum_version = "5.0.2")) require("Bergm") set.seed(12345) data(florentine) suppressWarnings(suppressMessages( p.flo <- bergm(flomarriage ~ edges + kstar(2), burn.in = 10, aux.iters = 30, main.iters = 30, gamma = 1.2))) tr <- extract(p.flo) expect_length(tr@se, 0) expect_length(tr@pvalues, 0) expect_length(tr@ci.low, 2) expect_length(tr@ci.up, 2) expect_length(tr@gof, 0) expect_length(tr@coef, 2) expect_equivalent(dim(matrixreg(p.flo)), c(5, 2)) }) # bife (bife) ---- test_that("extract bife objects from the bife package", { testthat::skip_on_cran() skip_if_not_installed("bife", minimum_version = "0.7") require("bife") set.seed(12345) mod <- bife(LFP ~ I(AGE^2) + log(INCH) + KID1 + KID2 + KID3 + factor(TIME) | ID, psid) tr <- extract(mod) expect_length(tr@coef.names, 13) expect_length(tr@coef, 13) expect_length(tr@se, 13) expect_length(tr@pvalues, 13) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 3) expect_length(tr@gof.names, 3) expect_length(tr@gof.decimal, 3) expect_equivalent(which(tr@gof.decimal), 1:2) expect_equivalent(which(tr@pvalues < 0.05), c(1:4, 8:13)) expect_equivalent(dim(matrixreg(mod)), c(30, 2)) }) ## commented out because it takes long and causes segfault in combination with other tests # # brmsfit (brms) ---- # test_that("extract brmsfit objects from the brms package", { # testthat::skip_on_cran() # skip_if_not_installed("brms", minimum_version = "2.8.8") # skip_if_not_installed("coda", minimum_version = "0.19.2") # require("brms") # require("coda") # # # example 2 from brm help page; see ?brm # sink(nullfile()) # suppressMessages( # fit2 <- brm(rating ~ period + carry + cs(treat), # data = inhaler, family = sratio("logit"), # prior = set_prior("normal(0,5)"), chains = 1)) # sink() # # suppressWarnings(tr <- extract(fit2)) # expect_length(tr@gof.names, 4) # expect_length(tr@coef, 8) # expect_length(tr@se, 8) # expect_length(tr@pvalues, 0) # expect_length(tr@ci.low, 8) # expect_length(tr@ci.up, 8) # expect_equivalent(which(tr@gof.decimal), c(1, 3, 4)) # suppressWarnings(expect_equivalent(dim(matrixreg(fit2)), c(21, 2))) # # # example 1 from brm help page; see ?brm # bprior1 <- prior(student_t(5, 0, 10), class = b) + prior(cauchy(0, 2), class = sd) # sink(nullfile()) # suppressMessages( # fit1 <- brm(count ~ zAge + zBase * Trt + (1|patient), # data = epilepsy, # family = poisson(), # prior = bprior1)) # sink() # # expect_warning(suppressMessages(tr <- extract(fit1, use.HDI = TRUE, reloo = TRUE))) # expect_length(tr@gof.names, 5) # expect_length(tr@coef, 5) # expect_length(tr@se, 5) # expect_length(tr@pvalues, 0) # expect_length(tr@ci.low, 5) # expect_length(tr@ci.up, 5) # expect_equivalent(which(tr@gof.decimal), c(1:2, 4:5)) # expect_equivalent(suppressWarnings(dim(matrixreg(fit1))), c(16, 2)) # }) # btergm (btergm) ---- test_that("extract btergm objects from the btergm package", { testthat::skip_on_cran() skip_if_not_installed("btergm", minimum_version = "1.10.10") set.seed(5) networks <- list() for (i in 1:10) { # create 10 random networks with 10 actors mat <- matrix(rbinom(100, 1, .25), nrow = 10, ncol = 10) diag(mat) <- 0 # loops are excluded networks[[i]] <- mat # add network to the list } covariates <- list() for (i in 1:10) { # create 10 matrices as covariate mat <- matrix(rnorm(100), nrow = 10, ncol = 10) covariates[[i]] <- mat # add matrix to the list } suppressWarnings(fit <- btergm::btergm(networks ~ edges + istar(2) + edgecov(covariates), R = 100, verbose = FALSE)) tr <- extract(fit) expect_length(tr@se, 0) expect_length(tr@pvalues, 0) expect_length(tr@ci.low, 3) expect_length(tr@ci.up, 3) expect_length(tr@gof, 1) expect_length(tr@coef, 3) expect_equivalent(dim(matrixreg(fit)), c(8, 2)) expect_true(all(tr@ci.low < tr@coef)) expect_true(all(tr@coef < tr@ci.up)) }) # clm (ordinal) ---- test_that("extract clm objects from the ordinal package", { testthat::skip_on_cran() skip_if_not_installed("ordinal", minimum_version = "2019.12.10") set.seed(12345) fit <- ordinal::clm(Species ~ Sepal.Length, data = iris) tr <- extract(fit) expect_length(tr@coef.names, 3) expect_length(tr@coef, 3) expect_length(tr@se, 3) expect_length(tr@pvalues, 3) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 4) expect_length(tr@gof.names, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(which(tr@gof.decimal), 1:3) expect_equivalent(which(tr@pvalues < 0.05), 1:3) expect_equivalent(dim(matrixreg(fit)), c(11, 2)) }) # dynlm (dynlm) ---- test_that("extract dynlm objects from the dynlm package", { testthat::skip_on_cran() skip_if_not_installed("dynlm") skip_if_not_installed("datasets") require("dynlm") set.seed(12345) data("UKDriverDeaths", package = "datasets") uk <- log10(UKDriverDeaths) dfm <- dynlm(uk ~ L(uk, 1) + L(uk, 12)) tr <- extract(dfm, include.rmse = TRUE) expect_length(tr@coef.names, 3) expect_length(tr@coef, 3) expect_length(tr@se, 3) expect_length(tr@pvalues, 3) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 4) expect_length(tr@gof.names, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(which(tr@gof.decimal), c(1, 2, 4)) expect_equivalent(which(tr@pvalues < 0.05), 2:3) expect_equivalent(dim(matrixreg(dfm)), c(10, 2)) }) # ergm (ergm) ---- test_that("extract ergm objects from the ergm package", { testthat::skip_on_cran() skip_if_not_installed("ergm", minimum_version = "4.1.2") require("ergm") set.seed(12345) data(florentine) suppressMessages(gest <- ergm(flomarriage ~ edges + absdiff("wealth"))) tr1 <- extract(gest) expect_length(tr1@coef.names, 2) expect_length(tr1@coef, 2) expect_length(tr1@se, 2) expect_length(tr1@pvalues, 2) expect_length(tr1@ci.low, 0) expect_length(tr1@ci.up, 0) expect_length(tr1@gof, 3) expect_length(tr1@gof.names, 3) expect_length(tr1@gof.decimal, 3) expect_equivalent(which(tr1@gof.decimal), 1:3) expect_equivalent(dim(matrixreg(gest)), c(8, 2)) data(molecule) molecule %v% "atomic type" <- c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3) suppressMessages(gest <- ergm(molecule ~ edges + kstar(2) + triangle + nodematch("atomic type"))) tr2 <- extract(gest) expect_length(tr2@coef.names, 4) expect_length(tr2@coef, 4) expect_length(tr2@se, 4) expect_length(tr2@pvalues, 4) expect_length(tr2@ci.low, 0) expect_length(tr2@ci.up, 0) expect_length(tr2@gof, 3) expect_length(tr2@gof.names, 3) expect_length(tr2@gof.decimal, 3) expect_equivalent(which(tr2@gof.decimal), 1:3) expect_equivalent(dim(matrixreg(gest)), c(12, 2)) }) # feglm (alpaca) ---- test_that("extract feglm objects from the alpaca package", { testthat::skip_on_cran() skip_if_not_installed("alpaca", minimum_version = "0.3.2") require("alpaca") set.seed(12345) data <- simGLM(1000L, 20L, 1805L, model = "logit") mod <- feglm(y ~ x1 + x2 + x3 | i + t, data) tr <- extract(mod) expect_length(tr@coef.names, 3) expect_length(tr@coef, 3) expect_length(tr@se, 3) expect_length(tr@pvalues, 3) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 4) expect_length(tr@gof.names, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(which(tr@gof.decimal), 1) expect_equivalent(which(tr@pvalues < 0.05), 1:3) expect_equivalent(dim(matrixreg(mod)), c(11, 2)) }) # feis (feisr) ---- test_that("extract feis objects from the feisr package", { testthat::skip_on_cran() skip_if_not_installed("feisr", minimum_version = "1.0.1") require("feisr") set.seed(12345) data("mwp", package = "feisr") feis1.mod <- feis(lnw ~ marry | exp, data = mwp, id = "id") feis2.mod <- feis(lnw ~ marry + enrol + as.factor(yeargr) | exp, data = mwp, id = "id") tr <- extract(feis1.mod) expect_equivalent(tr@coef, 0.056, tolerance = 1e-3) expect_equivalent(tr@se, 0.0234, tolerance = 1e-3) expect_equivalent(tr@pvalues, 0.0165, tolerance = 1e-3) expect_equivalent(tr@gof, c(0.002, 0.002, 3100, 268, 0.312), tolerance = 1e-3) expect_length(tr@gof.names, 5) tr2 <- extract(feis2.mod) expect_length(tr2@coef, 6) expect_length(which(tr2@pvalues < 0.05), 2) expect_length(which(tr2@gof.decimal), 3) }) # felm (lfe) ---- test_that("extract felm objects from the lfe package", { testthat::skip_on_cran() skip_if_not_installed("lfe", minimum_version = "2.8.5") require("lfe") set.seed(12345) x <- rnorm(1000) x2 <- rnorm(length(x)) id <- factor(sample(20, length(x), replace = TRUE)) firm <- factor(sample(13, length(x),replace = TRUE)) id.eff <- rnorm(nlevels(id)) firm.eff <- rnorm(nlevels(firm)) u <- rnorm(length(x)) y <- x + 0.5 * x2 + id.eff[id] + firm.eff[firm] + u est <- felm(y ~ x + x2 | id + firm) tr <- extract(est) expect_equivalent(tr@coef, c(1.0188, 0.5182), tolerance = 1e-2) expect_equivalent(tr@se, c(0.032, 0.032), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.00), tolerance = 1e-2) expect_equivalent(tr@gof, c(1000, 0.7985, 0.575, 0.792, 0.560, 20, 13), tolerance = 1e-2) expect_length(tr@gof.names, 7) expect_length(tr@coef, 2) expect_equivalent(which(tr@pvalues < 0.05), 1:2) expect_equivalent(which(tr@gof.decimal), 2:5) # check exclusion of projected model statistics tr <- extract(est, include.proj.stats = FALSE) expect_length(tr@gof.names, 5) expect_false(any(grepl('proj model', tr@gof.names, fixed = TRUE))) # without fixed effects OLS1 <- felm(Sepal.Length ~ Sepal.Width |0|0|0, data = iris) tr1 <- extract(OLS1) expect_length(tr1@gof, 5) }) # fixest (fixest) ---- test_that("extract fixest objects created with the fixest package", { testthat::skip_on_cran() skip_if_not_installed("fixest", minimum_version = "0.10.5") require("fixest") # test ordinary least squares with multiple fixed effects set.seed(12345) x <- rnorm(1000) data <- data.frame( x = x, x2 = rnorm(length(x)), id = factor(sample(20, length(x), replace = TRUE)), firm = factor(sample(13, length(x),replace = TRUE)) ) id.eff <- rnorm(nlevels(data$id)) firm.eff <- rnorm(nlevels(data$firm)) u <- rnorm(length(x)) data$y <- with(data, x + 0.5 * x2 + id.eff[id] + firm.eff[firm] + u) est <- feols(y ~ x + x2 | id + firm, data = data) tr <- extract(est) expect_equivalent(tr@coef, c(1.0188, 0.5182), tolerance = 1e-2) # NOTE: standard errors differ from default produced by lfe (tested above) # see https://cran.r-project.org/web/packages/fixest/vignettes/standard_errors.html expect_equivalent(tr@se, c(0.021, 0.032), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.00), tolerance = 1e-2) expect_equivalent(tr@gof, c(1000, 20, 13, 0.7985, 0.575, 0.792, 0.57), tolerance = 1e-2) expect_lte(length(tr@gof.names), 7) expect_gte(length(tr@gof.names), 5) expect_length(tr@coef, 2) expect_equivalent(which(tr@pvalues < 0.05), 1:2) # test generalized linear model data$y <- rpois(length(data$x), exp(data$x + data$x2 + id.eff[data$id])) est <- fepois(y ~ x + x2 | id, data = data) tr <- extract(est) expect_equivalent(tr@coef, c(1.00, 1.00), tolerance = 1e-2) expect_equivalent(tr@se, c(0.01, 0.02), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.00), tolerance = 1e-2) expect_equivalent(tr@gof, c(1000, 20, 955.4, -1479.6, 0.83), tolerance = 1e-2) expect_length(tr@gof.names, 5) expect_length(tr@coef, 2) expect_equivalent(which(!tr@gof.decimal), 1:2) }) # gamlssZadj (gamlss.inf) ---- test_that("extract gamlssZadj objects from the gamlss.inf package", { testthat::skip_on_cran() skip_if_not_installed("gamlss.inf", minimum_version = "1.0.1") require("gamlss.inf") set.seed(12345) sink(nullfile()) y0 <- rZAGA(1000, mu = .3, sigma = .4, nu = .15) g0 <- gamlss(y0 ~ 1, family = ZAGA) t0 <- gamlssZadj(y = y0, mu.formula = ~1, family = GA, trace = TRUE) sink() tr <- extract(t0) expect_length(tr@gof.names, 2) expect_length(tr@coef, 3) expect_length(tr@se, 3) expect_length(tr@pvalues, 3) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_equivalent(which(tr@gof.decimal), 2) expect_equivalent(tr@coef.names, c("$\\mu$ (Intercept)", "$\\sigma$ (Intercept)", "$\\nu$ (Intercept)")) }) # glm.cluster (miceadds) ---- test_that("extract glm.cluster objects from the miceadds package", { testthat::skip_on_cran() skip_if_not_installed("miceadds", minimum_version = "3.8.9") require("miceadds") data(data.ma01) dat <- data.ma01 dat$highmath <- 1 * (dat$math > 600) mod2 <- miceadds::glm.cluster(data = dat, formula = highmath ~ hisei + female, cluster = "idschool", family = "binomial") tr <- extract(mod2) expect_equivalent(tr@coef, c(-2.76, 0.03, -0.15), tolerance = 1e-2) expect_equivalent(tr@se, c(0.25, 0.00, 0.10), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.00, 0.13), tolerance = 1e-2) expect_equivalent(tr@gof, c(3108.095, 3126.432, -1551.047, 3102.095, 3336.000), tolerance = 1e-2) expect_length(tr@gof.names, 5) expect_length(tr@coef, 3) expect_equivalent(which(tr@pvalues < 0.05), 1:2) expect_equivalent(which(tr@gof.decimal), 1:4) }) # glmerMod (lme4) ---- test_that("extract glmerMod objects from the lme4 package", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_not_installed("lme4", minimum_version = "1.1.34") skip_if_not_installed("Matrix", minimum_version = "1.6.1") require("lme4") set.seed(12345) gm1 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) expect_equivalent(class(gm1)[1], "glmerMod") tr <- extract(gm1, include.dic = TRUE, include.deviance = TRUE) expect_equivalent(tr@coef, c(-1.40, -0.99, -1.13, -1.58), tolerance = 1e-2) expect_equivalent(tr@se, c(0.23, 0.30, 0.32, 0.42), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0, 0, 0, 0), tolerance = 1e-2) expect_length(tr@gof.names, 8) expect_equivalent(which(tr@gof.decimal), c(1:5, 8)) expect_length(which(grepl("Var", tr@gof.names)), 1) expect_length(which(grepl("Cov", tr@gof.names)), 0) tr_profile <- extract(gm1, method = "profile", nsim = 5) tr_boot <- suppressWarnings(extract(gm1, method = "boot", nsim = 5)) tr_wald <- extract(gm1, method = "Wald") expect_length(tr_profile@se, 0) expect_length(tr_profile@ci.low, 4) expect_length(tr_profile@ci.up, 4) expect_length(tr_boot@se, 0) expect_length(tr_boot@ci.low, 4) expect_length(tr_boot@ci.up, 4) expect_length(tr_wald@se, 0) expect_length(tr_wald@ci.low, 4) expect_length(tr_wald@ci.up, 4) }) # glmmTMB (glmmTMB) ---- test_that("extract glmmTMB objects from the glmmTMB package", { testthat::skip_on_cran() skip_if_not_installed("glmmTMB", minimum_version = "1.0.1") require("glmmTMB") set.seed(12345) m2 <- glmmTMB(count ~ spp + mined + (1|site), zi = ~ spp + mined, family = nbinom2, data = Salamanders) tr <- extract(m2) expect_length(tr@gof.names, 5) expect_length(tr@coef, 16) expect_length(tr@se, 16) expect_length(tr@pvalues, 16) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_equivalent(which(tr@gof.decimal), c(1, 2, 5)) tr <- extract(m2, beside = TRUE) expect_length(tr[[1]]@gof.names, 5) expect_length(tr[[1]]@coef, 8) expect_length(tr[[2]]@coef, 8) expect_length(tr[[1]]@se, 8) expect_length(tr[[2]]@se, 8) expect_length(tr[[1]]@pvalues, 8) expect_length(tr[[2]]@pvalues, 8) expect_length(tr, 2) expect_equivalent(which(tr[[2]]@gof.decimal), c(1, 2, 5)) data("mtcars") cars <- glmmTMB(gear ~ mpg, data = mtcars) tr_cars <- extract(cars) expect_length(tr_cars@gof, 3) expect_equal(tr_cars@gof.decimal, c(TRUE, TRUE, FALSE)) expect_equal(tr_cars@gof.names, c("AIC", "Log Likelihood", "Num. obs.")) expect_length(tr_cars@coef, 2) expect_length(tr_cars@se, 2) expect_length(tr_cars@pvalues, 2) }) # ivreg (AER) ---- test_that("extract ivreg objects from the AER package", { testthat::skip_on_cran() skip_if_not_installed("AER") require("AER") set.seed(12345) data("CigarettesSW", package = "AER") CigarettesSW$rprice <- with(CigarettesSW, price / cpi) CigarettesSW$rincome <- with(CigarettesSW, income/population / cpi) CigarettesSW$tdiff <- with(CigarettesSW, (taxs - tax) / cpi) fm <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) + tdiff + I(tax/cpi), data = CigarettesSW, subset = year == "1995") tr1 <- extract(fm, vcov = sandwich, df = Inf, diagnostics = TRUE, include.rmse = TRUE) fm2 <- ivreg(log(packs) ~ log(rprice) | tdiff, data = CigarettesSW, subset = year == "1995") tr2 <- extract(fm2) expect_equivalent(tr1@coef, c(9.89, -1.28, 0.28), tolerance = 1e-2) expect_equivalent(tr1@se, c(0.93, 0.24, 0.25), tolerance = 1e-2) expect_equivalent(tr1@pvalues, c(0.00, 0.00, 0.25), tolerance = 1e-2) expect_equivalent(tr1@gof, c(0.43, 0.40, 48, 0.19), tolerance = 1e-2) expect_length(tr1@gof.names, 4) expect_length(tr2@coef, 2) expect_length(which(tr2@pvalues < 0.05), 2) expect_equivalent(which(tr2@gof.decimal), 1:2) }) # lm (stats) ---- test_that("extract lm objects from the stats package", { set.seed(12345) ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14) trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69) group <- gl(2, 10, 20, labels = c("Ctl","Trt")) weight <- c(ctl, trt) lm.D9 <- lm(weight ~ group) lm.D90 <- lm(weight ~ group - 1) tr <- extract(lm.D9) expect_equivalent(tr@coef, c(5.032, -0.371), tolerance = 1e-3) expect_equivalent(tr@se, c(0.22, 0.31), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.25), tolerance = 1e-2) expect_equivalent(tr@gof, c(0.07, 0.02, 20), tolerance = 1e-2) expect_length(tr@gof.names, 3) tr2 <- extract(lm.D90, include.rmse = TRUE) expect_length(tr2@coef, 2) expect_length(which(tr2@pvalues < 0.05), 2) expect_length(which(tr2@gof.decimal), 3) }) # lm.cluster (miceadds) ---- test_that("extract lm.cluster objects from the miceadds package", { testthat::skip_on_cran() skip_if_not_installed("miceadds", minimum_version = "3.8.9") require("miceadds") data(data.ma01) dat <- data.ma01 mod1 <- miceadds::lm.cluster(data = dat, formula = read ~ hisei + female, cluster = "idschool") tr <- extract(mod1) expect_equivalent(tr@coef, c(418.80, 1.54, 35.70), tolerance = 1e-2) expect_equivalent(tr@se, c(6.45, 0.11, 3.81), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.00, 0.00, 0.00), tolerance = 1e-2) expect_equivalent(tr@gof, c(0.15, 0.15, 3180), tolerance = 1e-2) expect_length(tr@gof.names, 3) expect_length(tr@coef, 3) expect_equivalent(which(tr@pvalues < 0.05), 1:3) expect_equivalent(which(tr@gof.decimal), 1:2) }) # lmerMod (lme4) ---- test_that("extract lmerMod objects from the lme4 package", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_not_installed("lme4", minimum_version = "1.1.34") skip_if_not_installed("Matrix", minimum_version = "1.6.1") require("lme4") set.seed(12345) fm1 <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy) fm1_ML <- update(fm1, REML = FALSE) fm2 <- lmer(Reaction ~ Days + (Days || Subject), sleepstudy) tr1 <- extract(fm1, include.dic = TRUE, include.deviance = TRUE) tr1_ML <- extract(fm1_ML, include.dic = TRUE, include.deviance = TRUE) tr2_profile <- extract(fm2, method = "profile", nsim = 5) tr2_boot <- suppressWarnings(extract(fm2, method = "boot", nsim = 5)) tr2_wald <- extract(fm2, method = "Wald") expect_equivalent(class(fm1)[1], "lmerMod") expect_equivalent(tr1@coef, c(251.41, 10.47), tolerance = 1e-2) expect_equivalent(tr1@coef, tr1_ML@coef, tolerance = 1e-2) expect_equivalent(tr1@se, c(6.82, 1.55), tolerance = 1e-2) expect_equivalent(tr1@pvalues, c(0, 0), tolerance = 1e-2) expect_equivalent(tr1@gof, c(1755.63, 1774.79, 1760.25, 1751.94, -871.81, 180, 18, 611.90, 35.08, 9.61, 654.94), tolerance = 1e-2) expect_length(tr1@gof.names, 11) expect_equivalent(which(tr1@gof.decimal), c(1:5, 8:11)) expect_equivalent(tr1@coef, tr1_ML@coef) expect_length(tr1_ML@gof, 11) expect_length(tr2_profile@gof, 8) expect_equivalent(tr1@coef, tr2_profile@coef, tolerance = 1e-2) expect_equivalent(tr1@coef, tr2_boot@coef, tolerance = 1e-2) expect_equivalent(tr1@coef, tr2_wald@coef, tolerance = 1e-2) expect_length(which(grepl("Var", tr1@gof.names)), 3) expect_length(which(grepl("Var", tr2_wald@gof.names)), 3) expect_length(which(grepl("Cov", tr1@gof.names)), 1) expect_length(which(grepl("Cov", tr2_wald@gof.names)), 0) }) # maxLik (maxLik) ---- test_that("extract maxLik objects from the maxLik package", { testthat::skip_on_cran() testthat::skip_if_not_installed("maxLik", minimum_version = "1.4.8") require("maxLik") set.seed(12345) # example 1 from help page t <- rexp(100, 2) loglik <- function(theta) log(theta) - theta * t gradlik <- function(theta) 1 / theta - t hesslik <- function(theta) -100 / theta^2 sink(nullfile()) a <- maxLik(loglik, start = 1, control = list(printLevel = 2)) sink() tr1 <- extract(a) expect_length(tr1@coef.names, 1) expect_length(tr1@coef, 1) expect_length(tr1@se, 1) expect_length(tr1@pvalues, 1) expect_length(tr1@ci.low, 0) expect_length(tr1@ci.up, 0) expect_true(!any(is.na(tr1@coef))) expect_length(tr1@gof, 2) expect_length(tr1@gof.names, 2) expect_length(tr1@gof.decimal, 2) expect_equivalent(which(tr1@gof.decimal), 1:2) # example 2 from help page b <- maxLik(loglik, gradlik, hesslik, start = 1, control = list(tol = -1, reltol = 1e-12, gradtol = 1e-12)) tr2 <- extract(b) expect_length(tr2@coef.names, 1) expect_length(tr2@coef, 1) expect_length(tr2@se, 1) expect_length(tr2@pvalues, 1) expect_length(tr2@ci.low, 0) expect_length(tr2@ci.up, 0) expect_true(!any(is.na(tr2@coef))) expect_length(tr2@gof, 2) expect_length(tr2@gof.names, 2) expect_length(tr2@gof.decimal, 2) expect_equivalent(which(tr2@gof.decimal), 1:2) # example 3 from help page loglik <- function(param) { mu <- param[1] sigma <- param[2] ll <- -0.5 * N * log(2 * pi) - N * log(sigma) - sum(0.5 * (x - mu)^2 / sigma^2) ll } x <- rnorm(100, 1, 2) N <- length(x) res <- maxLik(loglik, start = c(0, 1)) tr3 <- extract(res) expect_length(tr3@coef.names, 2) expect_length(tr3@coef, 2) expect_length(tr3@se, 2) expect_length(tr3@pvalues, 2) expect_length(tr3@ci.low, 0) expect_length(tr3@ci.up, 0) expect_true(!any(is.na(tr3@coef))) expect_length(tr3@gof, 2) expect_length(tr3@gof.names, 2) expect_length(tr3@gof.decimal, 2) expect_equivalent(which(tr3@gof.decimal), 1:2) # example 4 from help page resFix <- maxLik(loglik, start = c(mu = 0, sigma = 1), fixed = "sigma") tr4 <- extract(resFix) expect_length(tr3@coef.names, 2) expect_length(tr3@coef, 2) expect_length(tr3@se, 2) expect_length(tr3@pvalues, 2) expect_length(tr3@ci.low, 0) expect_length(tr3@ci.up, 0) expect_true(!any(is.na(tr3@coef))) expect_length(tr3@gof, 2) expect_length(tr3@gof.names, 2) expect_length(tr3@gof.decimal, 2) expect_equivalent(which(tr3@gof.decimal), 1:2) }) # mlogit (mlogit) ---- test_that("extract mlogit objects from the mlogit package", { testthat::skip_on_cran() testthat::skip_if_not_installed("mlogit", minimum_version = "1.1.0") require("mlogit") set.seed(12345) data("Fishing", package = "mlogit") Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode") m <- mlogit(mode ~ price + catch | income, data = Fish) tr1 <- extract(m) expect_equivalent(sum(abs(tr1@coef)), 3.382753, tolerance = 1e-2) expect_equivalent(sum(tr1@se), 0.7789933, tolerance = 1e-2) expect_equivalent(sum(tr1@pvalues), 0.6136796, tolerance = 1e-2) expect_equivalent(sum(tr1@gof), 2417.138, tolerance = 1e-2) expect_length(tr1@coef, 8) expect_length(tr1@gof, 4) expect_equivalent(which(tr1@gof.decimal), 1:2) expect_equivalent(tr1@gof[4], 4) expect_equal(dim(matrixreg(tr1)), c(21, 2)) expect_warning(extract(m, beside = TRUE), "choice-specific covariates") }) # mnlogit (mnlogit) ---- test_that("extract mnlogit models from the mnlogit package", { testthat::skip_on_cran() testthat::skip_if_not_installed("mnlogit", minimum_version = "1.2.6") require("mnlogit") set.seed(12345) data(Fish, package = "mnlogit") fit <- mnlogit(mode ~ price | income | catch, Fish, ncores = 1) tr <- extract(fit) expect_equivalent(sum(abs(tr@coef)), 13.33618, tolerance = 1e-2) expect_equivalent(sum(tr@se), 3.059299, tolerance = 1e-2) expect_equivalent(sum(tr@pvalues), 0.4701358, tolerance = 1e-2) expect_equivalent(sum(tr@gof), 2407.143, tolerance = 1e-2) expect_length(tr@coef, 11) expect_length(tr@gof, 4) expect_equivalent(which(tr@gof.decimal), 1:2) expect_equivalent(tr@gof[4], 4) expect_equal(dim(matrixreg(tr)), c(27, 2)) expect_warning(extract(fit, beside = TRUE), "choice-specific covariates") }) # multinom (nnet) ---- test_that("extract multinom objects from the nnet package", { testthat::skip_on_cran() testthat::skip_if_not_installed("nnet", minimum_version = "7.3.12") require("nnet") # example from https://thomasleeper.com/Rcourse/Tutorials/nominalglm.html set.seed(100) y <- sort(sample(1:3, 600, TRUE)) x <- numeric(length = 600) x[1:200] <- -1 * x[1:200] + rnorm(200, 4, 2) x[201:400] <- 1 * x[201:400] + rnorm(200) x[401:600] <- 2 * x[401:600] + rnorm(200, 2, 2) sink(nullfile()) m1 <- multinom(y ~ x) sink() tr2 <- extract(m1, beside = FALSE) tr3 <- extract(m1, beside = TRUE) expect_equivalent(sum(abs(tr2@coef)), 6.845567, tolerance = 1e-2) expect_equivalent(sum(tr2@se), 0.6671602, tolerance = 1e-2) expect_equivalent(sum(tr2@pvalues), 1.677308e-16, tolerance = 1e-2) expect_equivalent(sum(tr2@gof), 2852.451, tolerance = 1e-2) expect_length(tr2@coef, 4) expect_length(tr2@gof, 6) expect_equivalent(which(tr2@gof.decimal), 1:4) expect_equivalent(tr2@gof[6], 3) expect_equal(dim(matrixreg(tr2)), c(15, 2)) expect_length(tr3, 2) expect_length(tr3[[1]]@coef, 2) expect_length(tr3[[2]]@coef, 2) }) # nlmerMod (lme4) ---- test_that("extract nlmerMod objects from the lme4 package", { testthat::skip_on_cran() testthat::skip_on_ci() skip_if_not_installed("lme4", minimum_version = "1.1.34") skip_if_not_installed("Matrix", minimum_version = "1.6.1") require("lme4") set.seed(12345) startvec <- c(Asym = 200, xmid = 725, scal = 350) nm1 <- nlmer(circumference ~ SSlogis(age, Asym, xmid, scal) ~ Asym|Tree, Orange, start = startvec) expect_equivalent(class(nm1)[1], "nlmerMod") expect_warning(extract(nm1, include.dic = TRUE, include.deviance = TRUE), "falling back to var-cov estimated from RX") tr <- suppressWarnings(extract(nm1, include.dic = TRUE, include.deviance = TRUE)) expect_equivalent(tr@coef, c(192.05, 727.90, 348.07), tolerance = 1e-2) expect_equivalent(tr@se, c(15.58, 34.44, 26.31), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0, 0, 0), tolerance = 1e-2) expect_length(tr@gof.names, 9) expect_equivalent(which(tr@gof.decimal), c(1:5, 8, 9)) expect_length(which(grepl("Var", tr@gof.names)), 2) expect_length(which(grepl("Cov", tr@gof.names)), 0) tr_wald <- suppressWarnings(extract(nm1, method = "Wald")) expect_length(tr_wald@se, 0) expect_length(tr_wald@ci.low, 3) expect_length(tr_wald@ci.up, 3) }) # pcce (plm) ---- test_that("extract pcce objects from the plm package", { testthat::skip_on_cran() skip_if_not_installed("plm", minimum_version = "2.4.1") require("plm") set.seed(12345) data("Produc", package = "plm") ccepmod <- pcce(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model="p") tr <- extract(ccepmod) expect_length(tr@coef.names, 4) expect_length(tr@coef, 4) expect_length(tr@se, 4) expect_length(tr@pvalues, 4) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 4) expect_length(tr@gof.names, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(which(tr@gof.decimal), 1:3) ccemgmod <- pcce(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp, data = Produc, model="mg") tr2 <- extract(ccemgmod) expect_length(tr2@coef.names, 4) expect_length(tr2@coef, 4) expect_length(tr2@se, 4) expect_length(tr2@pvalues, 4) expect_length(tr2@ci.low, 0) expect_length(tr2@ci.up, 0) expect_length(tr2@gof, 4) expect_length(tr2@gof.names, 4) expect_length(tr2@gof.decimal, 4) expect_equivalent(which(tr2@gof.decimal), 1:3) }) # Sarlm (spatialreg) ---- test_that("extract Sarlm objects from the spatialreg package", { testthat::skip_on_cran() skip_if_not_installed("spatialreg", minimum_version = "1.2.1") require("spatialreg") set.seed(12345) # first example from ?lagsarlm data(oldcol, package = "spdep") listw <- spdep::nb2listw(COL.nb, style = "W") ev <- spatialreg::eigenw(listw) W <- as(listw, "CsparseMatrix") trMatc <- spatialreg::trW(W, type = "mult") sink(nullfile()) COL.lag.eig <- spatialreg::lagsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, listw = listw, method = "eigen", quiet = FALSE, control = list(pre_eig = ev, OrdVsign = 1)) sink() tr <- extract(COL.lag.eig) expect_length(tr@coef.names, 4) expect_length(tr@coef, 4) expect_length(tr@se, 4) expect_length(tr@pvalues, 4) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 7) expect_length(tr@gof.names, 7) expect_length(tr@gof.decimal, 7) expect_equivalent(which(tr@gof.decimal), 3:7) # example from ?predict.Sarlm lw <- spdep::nb2listw(COL.nb) COL.lag.eig2 <- COL.mix.eig <- lagsarlm(CRIME ~ INC + HOVAL, data = COL.OLD, lw, type = "mixed") tr2 <- extract(COL.lag.eig2) expect_length(tr2@coef.names, 6) expect_length(tr2@coef, 6) expect_length(tr2@se, 6) expect_length(tr2@pvalues, 6) expect_length(tr2@ci.low, 0) expect_length(tr2@ci.up, 0) expect_length(tr2@gof, 7) expect_length(tr2@gof.names, 7) expect_length(tr2@gof.decimal, 7) expect_equivalent(which(tr2@gof.decimal), 3:7) }) # speedglm (speedglm) ---- test_that("extract speedglm objects from the speedglm package", { testthat::skip_on_cran() skip_if_not_installed("speedglm", minimum_version = "0.3.2") require("speedglm") set.seed(12345) n <- 50000 k <- 80 y <- rgamma(n, 1.5, 1) x <-round( matrix(rnorm(n * k), n, k), digits = 3) colnames(x) <-paste("s", 1:k, sep = "") da <- data.frame(y, x) fo <- as.formula(paste("y ~", paste(paste("s", 1:k, sep = ""), collapse = " + "))) m3 <- speedglm(fo, data = da, family = Gamma(log)) tr <- extract(m3) expect_length(tr@gof.names, 5) expect_length(tr@coef, 81) expect_equivalent(tr@gof.names, c("AIC", "BIC", "Log Likelihood", "Deviance", "Num. obs.")) expect_equivalent(which(tr@pvalues < 0.05), c(1, 4, 5, 17, 20, 21, 43, 65, 68, 73, 80)) expect_equivalent(which(tr@gof.decimal), 1:4) }) # speedlm (speedglm) ---- test_that("extract speedlm objects from the speedglm package", { testthat::skip_on_cran() skip_if_not_installed("speedglm", minimum_version = "0.3.2") require("speedglm") set.seed(12345) n <- 1000 k <- 3 y <- rnorm(n) x <- round(matrix(rnorm(n * k), n, k), digits = 3) colnames(x) <- c("s1", "s2", "s3") da <- data.frame(y, x) do1 <- da[1:300, ] do2 <- da[301:700, ] do3 <- da[701:1000, ] m1 <- speedlm(y ~ s1 + s2 + s3, data = do1) m1 <- update(m1, data = do2) m1 <- update(m1, data = do3) tr <- extract(m1, include.fstatistic = TRUE) expect_equivalent(tr@coef, c(0.05, 0.04, -0.01, -0.03), tolerance = 1e-2) expect_equivalent(tr@se, c(0.03, 0.03, 0.03, 0.03), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0.13, 0.22, 0.69, 0.39), tolerance = 1e-2) expect_equivalent(tr@gof, c(0, 0, 1000, 0.80), tolerance = 1e-2) expect_length(tr@gof.names, 4) expect_length(tr@coef, 4) expect_equivalent(which(tr@pvalues < 0.05), integer()) expect_equivalent(which(tr@gof.decimal), c(1, 2, 4)) }) # truncreg (truncreg) ---- test_that("extract truncreg objects from the truncreg package", { testthat::skip_on_cran() skip_if_not_installed("truncreg", minimum_version = "0.2.5") require("truncreg") set.seed(12345) x <- rnorm(100, mean = 1) y <- rnorm(100, mean = 1.3) dta <- data.frame(x, y) dta <- dta[y < quantile(y, 0.8), ] model <- truncreg(y ~ x, data = dta, point = max(dta$y), direction = "right") tr <- extract(model) expect_equivalent(tr@coef, c(1.24, 0.05, 0.96), tolerance = 1e-2) expect_equivalent(tr@se, c(0.25, 0.12, 0.14), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0, 0.67, 0), tolerance = 1e-2) expect_equivalent(tr@gof, c(80, -81.69, 169.38, 176.53), tolerance = 1e-2) expect_length(tr@gof.names, 4) expect_length(tr@coef, 3) expect_equivalent(which(tr@pvalues < 0.05), c(1, 3)) expect_equivalent(which(tr@gof.decimal), 2:4) }) # weibreg (eha) ---- test_that("extract weibreg objects from the eha package", { testthat::skip_on_cran() skip_if_not_installed("eha", minimum_version = "2.9.0") require("eha") set.seed(12345) # stratified model example from weibreg help page dat <- data.frame(time = c(4, 3, 1, 1, 2, 2, 3), status = c(1, 1, 1, 0, 1, 1, 0), x = c(0, 2, 1, 1, 1, 0, 0), sex = c(0, 0, 0, 0, 1, 1, 1)) model <- eha::weibreg(Surv(time, status) ~ x + strata(sex), data = dat) tr <- extract(model) expect_length(tr@coef, 5) expect_equivalent(class(tr@coef), "numeric") expect_length(tr@se, 5) expect_equivalent(class(tr@se), "numeric") expect_length(tr@pvalues, 5) expect_equivalent(class(tr@pvalues), "numeric") expect_length(tr@coef.names, 5) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof, 6) expect_length(tr@gof.names, 6) expect_length(tr@gof.decimal, 6) expect_equivalent(tr@gof[5], 5) expect_equivalent(which(tr@pvalues < 0.05), 2:5) expect_equivalent(which(tr@gof.decimal), 1:3) }) # wls (metaSEM) ---- test_that("extract wls objects from the metaSEM package", { testthat::skip_on_cran() skip_if_not_installed("metaSEM", minimum_version = "1.2.5.1") require("metaSEM") set.seed(12345) # example 1 from wls help page: analysis of correlation structure R1.labels <- c("a1", "a2", "a3", "a4") R1 <- matrix(c(1.00, 0.22, 0.24, 0.18, 0.22, 1.00, 0.30, 0.22, 0.24, 0.30, 1.00, 0.24, 0.18, 0.22, 0.24, 1.00), ncol = 4, nrow = 4, dimnames = list(R1.labels, R1.labels)) n <- 1000 acovR1 <- metaSEM::asyCov(R1, n) model1 <- "f =~ a1 + a2 + a3 + a4" RAM1 <- metaSEM::lavaan2RAM(model1, obs.variables = R1.labels) wls.fit1a <- metaSEM::wls(Cov = R1, aCov = acovR1, n = n, RAM = RAM1, cor.analysis = TRUE, intervals = "LB") tr1 <- extract(wls.fit1a) expect_length(tr1@coef.names, 4) expect_length(tr1@coef, 4) expect_length(tr1@se, 0) expect_length(tr1@pvalues, 0) expect_length(tr1@ci.low, 4) expect_length(tr1@ci.up, 4) expect_true(!any(is.na(tr1@coef))) expect_length(tr1@gof, 11) expect_length(tr1@gof.names, 11) expect_length(tr1@gof.decimal, 11) expect_equivalent(tr1@gof[8], 0.23893943, tolerance = 1e-2) expect_equivalent(which(tr1@gof.decimal), c(1, 3, 4, 5, 6, 7, 8, 10, 11)) # example 2 from wls help page: multiple regression R2.labels <- c("y", "x1", "x2") R2 <- matrix(c(1.00, 0.22, 0.24, 0.22, 1.00, 0.30, 0.24, 0.30, 1.00), ncol = 3, nrow = 3, dimnames = list(R2.labels, R2.labels)) acovR2 <- metaSEM::asyCov(R2, n) model2 <- "y ~ x1 + x2 ## Variances of x1 and x2 are 1 x1 ~~ 1*x1 x2 ~~ 1*x2 ## x1 and x2 are correlated x1 ~~ x2" RAM2 <- metaSEM::lavaan2RAM(model2, obs.variables = R2.labels) wls.fit2a <- metaSEM::wls(Cov = R2, aCov = acovR2, n = n, RAM = RAM2, cor.analysis = TRUE, intervals = "LB") tr2 <- extract(wls.fit2a) expect_length(tr2@coef.names, 3) expect_length(tr2@coef, 3) expect_length(tr2@se, 0) expect_length(tr2@pvalues, 0) expect_length(tr2@ci.low, 3) expect_length(tr2@ci.up, 3) expect_true(!any(is.na(tr2@coef))) expect_length(tr2@gof, 11) expect_length(tr2@gof.names, 11) expect_length(tr2@gof.decimal, 11) expect_equivalent(tr2@gof[8], 0.0738, tolerance = 1e-2) expect_equivalent(which(tr2@gof.decimal), c(1, 3, 4, 5, 6, 7, 8, 10, 11)) # example 3 from wls help page R3.labels <- c("a1", "a2", "a3", "a4") R3 <- matrix(c(1.50, 0.22, 0.24, 0.18, 0.22, 1.60, 0.30, 0.22, 0.24, 0.30, 1.80, 0.24, 0.18, 0.22, 0.24, 1.30), ncol = 4, nrow = 4, dimnames = list(R3.labels, R3.labels)) n <- 1000 acovS3 <- metaSEM::asyCov(R3, n, cor.analysis = FALSE) model3 <- "f =~ a1 + a2 + a3 + a4" RAM3 <- metaSEM::lavaan2RAM(model3, obs.variables = R3.labels) wls.fit3a <- metaSEM::wls(Cov = R3, aCov = acovS3, n = n, RAM = RAM3, cor.analysis = FALSE) tr3 <- extract(wls.fit3a) expect_length(tr3@coef.names, 8) expect_length(tr3@coef, 8) expect_length(tr3@se, 8) expect_length(tr3@pvalues, 8) expect_length(tr3@ci.low, 0) expect_length(tr3@ci.up, 0) expect_true(!any(is.na(tr3@coef))) expect_length(tr3@gof, 10) expect_length(tr3@gof.names, 10) expect_length(tr3@gof.decimal, 10) expect_equivalent(which(tr3@gof.decimal), c(1, 3, 4, 5, 6, 7, 9, 10)) expect_true(all(tr3@pvalues < 0.05)) }) # logitr (logitr) ---- test_that("extract logitr objects from the logitr package", { testthat::skip_on_cran() skip_if_not_installed("logitr", minimum_version = "0.8.0") require("logitr") set.seed(12345) mnl_pref <- logitr( data = yogurt, outcome = "choice", obsID = "obsID", pars = c("price", "feat", "brand") ) tr <- extract(mnl_pref) expect_equivalent(tr@coef, c(-0.37, 0.49, -3.72, -0.64, 0.73), tolerance = 1e-2) expect_equivalent(tr@se, c(0.02, 0.12, 0.15, 0.05, 0.08), tolerance = 1e-2) expect_equivalent(tr@pvalues, c(0, 0, 0, 0, 0), tolerance = 1e-2) expect_equivalent(tr@gof, c(2412.00, -2656.89, 5323.78, 5352.72), tolerance = 1e-2) expect_equivalent(which(tr@gof.decimal), c(2, 3, 4)) expect_equivalent(which(tr@pvalues < 0.05), seq(1, 5)) expect_length(tr@coef.names, 5) expect_length(tr@coef, 5) expect_length(tr@se, 5) expect_length(tr@pvalues, 5) expect_length(tr@ci.low, 0) expect_length(tr@ci.up, 0) expect_length(tr@gof.names, 4) expect_length(tr@gof, 4) expect_length(tr@gof.decimal, 4) expect_equivalent(dim(matrixreg(mnl_pref)), c(15, 2)) })