context("extract syntax") null_out_all_extract_opts <- function() { opts <- options() opts[grepl("^tensorflow[.]extract", names(opts))] <- list(NULL) options(opts) } arr <- function (...) { # create an array with the specified dimensions, and fill it with consecutive # increasing integers dims <- unlist(list(...)) array(1:prod(dims), dim = dims) } randn <- function (...) { dim <- c(...) array(rnorm(prod(dim)), dim = dim) } # check a simple (one-object) expression produces the same result when done on # an R array, and when done on a tensor, with results ported back to R # e.g. check_expr(a[1:3], swap = "a") check_expr <- function (expr, name = "x") { call <- substitute(expr) r_out <- as.array(eval(expr)) # swap the array for a constant, run, and convert back to an array obj <- get(name, parent.frame()) swapsies <- list(tf$constant(obj)) names(swapsies) <- name tf_out <- with(swapsies, grab(eval(call))) # check it's very very similar expect_identical(r_out, tf_out) } reset_warnings <- function() { e <- tensorflow:::warned_about e$negative_indices <- FALSE e$tensors_passed_asis <- FALSE } # capture previous r-like extraction method, set to default, and return later # old_extract_method <- options("tensorflow.extract.one_based") # options(tensorflow.extract.one_based = NULL) # options(tensorflow.extract.style = 'R') # test indexing for unknown dimensions test_that('extract works for unknown dimensions', { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.style = "R") # expected values with 5 rows x_vals <- matrix(rnorm(50), 5, 10) y1_exp <- as.array(x_vals[, 1]) y2_exp <- as.array(x_vals[, 1, drop = FALSE]) if(tf$executing_eagerly()) { t <- tf$convert_to_tensor(x_vals) y1_obs <- t[, 1] %>% as.array() y2_obs <- t[, 1, drop = FALSE] %>% as.array() } else { if (tf_version() >= "1.14") placeholder <- tf$compat$v1$placeholder else placeholder <- tf$placeholder # the output should retain the missing dimension x <- placeholder(tf$float64, shape(NULL, 10)) y1 <- x[, 1] y2 <- x[, 1, drop = FALSE] expect_identical(dim(y1), list(NULL)) expect_identical(dim(y2), list(NULL, 1L)) # get observed in values for these if (tf_version() >= "1.14") sess <- tf$compat$v1$Session() else sess <- tf$Session() y1_obs <- sess$run(y1, feed_dict = dict(x = x_vals)) y2_obs <- sess$run(y2, feed_dict = dict(x = x_vals)) } expect_identical(y1_obs, y1_exp) expect_identical(y2_obs, y2_exp) options(oopt) }) test_that("scalar indexing works", { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.style = "R") # set up arrays x1_ <- arr(3) x2_ <- arr(3, 3) x3_ <- arr(3, 3, 3) # cast to Tensors x1 <- tf$constant(x1_) x2 <- tf$constant(x2_) x3 <- tf$constant(x3_) # extract as arrays y1_ <- x1_[1] y2_ <- x2_[1, 2] y3_ <- x3_[1, 2, 3] # extract as Tensors y1 <- x1[1] y2 <- x2[1, 2] y3 <- x3[1, 2, 3] # they should be equivalent expect_equal(y1_, grab(y1)) expect_equal(y2_, grab(y2)) expect_equal(y3_, grab(y3)) options(oopt) }) # tests for 0-based indexing # options(tensorflow.extract.one_based = FALSE) test_that("vector indexing works", { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.one_based = FALSE) # set up arrays x1_ <- arr(3) x2_ <- arr(3, 3) # cast to Tensors x1 <- tf$constant(x1_) x2 <- tf$constant(x2_) # extract as arrays y1_ <- x1_[2:3] y2_ <- x2_[2:3, 1] # extract as Tensors y1 <- x1[1:2] y2 <- x2[1:2, 0] # these should be equivalent (need to coerce R version back to arrays) expect_equal(y1_, grab(y1)) expect_equal(array(y2_), grab(y2)) options(oopt) }) test_that("blank indices retain all elements", { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.one_based = FALSE) # set up arrays x1_ <- arr(3) x2_ <- arr(3, 3) x3_ <- arr(3, 3, 3) x4_ <- arr(3, 3, 3, 3) # cast to Tensors x1 <- tf$constant(x1_) x2 <- tf$constant(x2_) x3 <- tf$constant(x3_) x4 <- tf$constant(x4_) # extract as arrays y1_ <- x1_[] y2_a <- x2_[2:3, ] y2_b <- x2_[, 1:2] y3_a <- x3_[2:3, 1, ] y3_b <- x3_[2:3, , 1] y4_ <- x4_[2:3, 1, , 2:3] # extract as Tensors y1 <- x1[] y2a <- x2[1:2, ] # j missing y2b <- x2[, 0:1] y3a <- x3[1:2, 0, ] y3b <- x3[1:2, , 0] y4 <- x4[1:2, 0, , 1:2] # these should be equivalent expect_equal(y1_, grab(y1)) expect_equal(y2_a, grab(y2a)) expect_equal(y2_b, grab(y2b)) # expect_equal(y3_a, grab(y3a)) expect_equal(y3_b, grab(y3b)) # expect_equal(y4_, grab(y4)) options(oopt) }) test_that("indexing works within functions", { skip_if_no_tensorflow() # tensorflow.extract.style = "python", oopt <- options(tensorflow.extract.one_based = FALSE) # set up arrays x1_ <- arr(3) x2_ <- arr(3, 3) x3_ <- arr(3, 3, 3) # cast to Tensors x1 <- tf$constant(x1_) x2 <- tf$constant(x2_) x3 <- tf$constant(x3_) # set up functions sub1 <- function (x, a) x[a - 1] sub2 <- function (x, a, b) x[a - 1, b - 1] sub3 <- function (x, b, c) x[, b - 1, c - 1] # skip first element # extract as arrays y1_ <- x1_[1:3] y2_ <- x2_[, 1:2] y3_a <- x3_[, 1:2, ] y3_b <- x3_[, , 1] # extract as Tensors y1 <- sub1(x1, 1:3) y2 <- sub2(x2, 1:3, 1:2) y3a <- sub3(x3, 1:2, 1:3) y3b <- sub3(x3, 1:3, 1) # these should be equivalent expect_equal(y1_, grab(y1)) expect_equal(y2_, grab(y2)) expect_equal(y3_a, grab(y3a)) expect_equal(y3_b, grab(y3b)) options(oopt) }) test_that("indexing works with variables", { skip_if_no_tensorflow() expect_ok <- function (expr) { expect_is(expr, "tensorflow.python.framework.ops.Tensor") } # set up tensors x1 <- tf$constant(arr(3)) x2 <- tf$constant(arr(3, 3)) x3 <- tf$constant(arr(3, 3, 3)) # extract with index (these shouldn't error) index <- 2 expect_ok(x1[index]) # i expect_ok(x2[, index]) # j expect_ok(x3[, , index]) # dots }) test_that("indexing with negative sequences errors", { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.style = "R") # set up Tensors x1 <- tf$constant(arr(3)) x2 <- tf$constant(arr(3, 3)) # extract with negative indices (where : is not the top level call) expect_error(x1[-(1:2)], 'positive') expect_error(x2[-(1:2), ], 'positive') options(oopt) }) test_that("incorrect number of indices errors", { skip_if_no_tensorflow() # set up Tensor x <- tf$constant(arr(3, 3, 3)) # options(tensorflow.extract.one_based = TRUE) # too many expect_error(x[1:2, 2, 1:2, 3], 'Incorrect number of dimensions') expect_error(x[1:2, 2, 1:2, 3, , ], 'Incorrect number of dimensions') expect_error(x[1:2, 2, 1:2, 3, , drop = TRUE], 'Incorrect number of dimensions') # too few expect_warning(x[], 'Incorrect number of dimensions') expect_warning(x[1:2, ], 'Incorrect number of dimensions') expect_warning(x[1:2, 2], 'Incorrect number of dimensions') }) test_that("silly indices error", { skip_if_no_tensorflow() # set up Tensor x <- tf$constant(arr(3, 3, 3)) # these should all error and notify the user of the failing index expect_error(x[1:2, NA, 2], 'NA') expect_error(x[1:2, Inf, 2], 'Inf') expect_error(x[1:2, 'apple', 2], 'character') expect_error(x[1:2, mean, 2], 'function') }) test_that("passing non-vector indices errors", { skip_if_no_tensorflow() # set up Tensor x1 <- tf$constant(arr(3, 3)) x2 <- tf$constant(arr(3, 3, 3)) # block indices block_idx_1 <- rbind(c(1, 2), c(0, 1)) block_idx_2 <- rbind(c(1, 2, 1), c(0, 1, 2)) # indexing with matrices should fail expect_error(x1[block_idx_1], 'not currently supported') expect_error(x2[block_idx_2], 'not currently supported') }) # thanks to @dfalbel https://github.com/rstudio/tensorflow/issues/139 # also check it returns the correct dimensions to R test_that("undefined extensions extract", { skip_if_no_tensorflow() oopt <- options(tensorflow.extract.style = 'python') x_ <- matrix(seq_len(3), ncol = 1) if(tf$executing_eagerly()) { t <- tf$convert_to_tensor(x_) result <- t[, 0L] %>% as.array() } else { if (tf_version() >= "1.14") placeholder <- tf$compat$v1$placeholder else placeholder <- tf$placeholder x <- placeholder(tf$int16, shape = list(NULL, 1L)) sub <- x[, 0L] if (tf_version() >= "1.14") sess <- tf$compat$v1$Session() else sess <- tf$Session() result <- sess$run(sub, dict(x = x_)) } expectation <- array(x_[, 1, drop = TRUE]) expect_equal(result, expectation) options(oopt) }) test_that("dim(), length(), nrow(), and ncol() work on tensors", { skip_if_no_tensorflow() a_matrix <- matrix(rnorm(100), ncol = 2) a_tensor <- tf$constant(a_matrix) expect_equal(dim(a_matrix), dim(a_tensor)) expect_equal(length(a_matrix), length(a_tensor)) expect_equal(nrow(a_matrix), nrow(a_tensor)) expect_equal(ncol(a_matrix), ncol(a_tensor)) }) test_that("all_dims()", { skip_if_no_tensorflow() x1.r <- arr(3) x2.r <- arr(3, 3) x3.r <- arr(3, 3, 3) x4.r <- arr(3, 3, 3, 3) x1.t <- tf$constant(x1.r) x2.t <- tf$constant(x2.r) x3.t <- tf$constant(x3.r) x4.t <- tf$constant(x4.r) options(tensorflow.extract.one_based = TRUE) expect_equal(grab( x1.t[all_dims()] ), x1.r[] ) expect_equal(grab( x1.t[1, all_dims()] ), x1.r[1] ) expect_equal(grab( x1.t[all_dims(), 1] ), x1.r[1] ) # as.array() because tf returns 1d arrays, not bare atomic vectors expect_equal(grab( x2.t[all_dims()] ), as.array( x2.r[,] )) expect_equal(grab( x2.t[1, all_dims()] ), as.array( x2.r[1,] )) expect_equal(grab( x2.t[ all_dims(), 1] ), as.array( x2.r[,1] )) expect_equal(grab( x3.t[all_dims()] ), as.array( x3.r[,,] )) expect_equal(grab( x3.t[1, all_dims()] ), as.array( x3.r[1,,] )) expect_equal(grab( x3.t[1, 1, all_dims()] ), as.array( x3.r[1,1,] )) expect_equal(grab( x3.t[1, all_dims(), 1] ), as.array( x3.r[1,,1] )) expect_equal(grab( x3.t[all_dims(), 1] ), as.array( x3.r[,,1] )) expect_equal(grab( x3.t[all_dims(), 1, 1] ), as.array( x3.r[,1,1] )) expect_equal(grab( x4.t[all_dims()] ), as.array( x4.r[,,,] )) expect_equal(grab( x4.t[1, all_dims()] ), as.array( x4.r[1,,,] )) expect_equal(grab( x4.t[1, 1, all_dims()] ), as.array( x4.r[1,1,,] )) expect_equal(grab( x4.t[1, all_dims(), 1] ), as.array( x4.r[1,,,1] )) expect_equal(grab( x4.t[all_dims(), 1] ), as.array( x4.r[,,,1] )) expect_equal(grab( x4.t[all_dims(), 1, 1] ), as.array( x4.r[,,1,1] )) }) test_that("negative-integers work python style", { skip_if_no_tensorflow() options(tensorflow.extract.warn_negatives_pythonic = FALSE) # options(tensorflow.warn_negative_extract_is_python_style = FALSE) x1.r <- arr(4) x2.r <- arr(4, 4) x1.t <- tf$constant(x1.r) x2.t <- tf$constant(x2.r) options(tensorflow.extract.one_based = TRUE) expect_equal(grab( x1.t[-1] ), x1.r[4] ) expect_equal(grab( x1.t[-2] ), x1.r[3] ) expect_equal(grab( x2.t[-2, -2] ), x2.r[3, 3] ) expect_equal(grab( x2.t[-1, ] ), as.array( x2.r[4,] )) options(tensorflow.extract.one_based = FALSE) # same as above expect_equal(grab( x1.t[-1] ), x1.r[4] ) expect_equal(grab( x1.t[-2] ), x1.r[3] ) expect_equal(grab( x1.t[NULL:-2] ), x1.r[1:3] ) expect_equal(grab( x1.t[NULL:-1] ), x1.r[] ) expect_equal(grab( x2.t[-2, -2] ), x2.r[3, 3] ) expect_equal(grab( x2.t[-1, ] ), as.array( x2.r[4,] )) null_out_all_extract_opts() }) test_that("python-style strided slice", { skip_if_no_tensorflow() oopts <- options() options(tensorflow.extract.warn_negatives_pythonic = FALSE) x.r <- arr(20, 2) # 2nd dim to keep R from dropping (since tf always returns 1d array) x.t <- tf$constant(x.r) options(tensorflow.extract.style = "R") expect_equal(grab( x.t[ `5:` ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ `5:NULL` ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NULL ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NA ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ `5:NULL:` ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NULL:NULL ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NA:NA ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NA:NA_integer_ ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ 5:NA_real_:NA ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ `5:NULL:NULL` ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ `5::` ,] ), x.r[ 5:20,]) expect_equal(grab( x.t[ `:5:` ,] ), x.r[ 1:5,]) expect_equal(grab( x.t[ `:5` ,] ), x.r[ 1:5,]) expect_equal(grab( x.t[ `2:5` ,] ), x.r[ 2:5,]) expect_equal(grab( x.t[ 2:5 ,] ), x.r[ 2:5,]) expect_equal(grab( x.t[ `::2` ,] ), x.r[ seq.int(1, 20, by = 2) ,]) expect_equal(grab( x.t[ NULL:NULL:2 ,] ), x.r[ seq.int(1, 20, by = 2) ,]) # non syntantic names or function calls can work too `_idx` <- 1 expect_equal(grab( x.t[ `_idx`:(identity(5)+1L),]), x.r[ 1:6, ] ) expect_equal(grab( x.t[ `2:6:2`,]), x.r[ seq.int(2, 6, 2) ,]) expect_equal(grab( x.t[ 2:6:2 ,]), x.r[ seq.int(2, 6, 2) ,]) # decreasing indexes work expect_equal(grab( x.t[ `6:2:-2`,]), x.r[ seq.int(6, 2, -2) ,]) expect_equal(grab( x.t[ 6:2:-2 ,]), x.r[ seq.int(6, 2, -2) ,]) # sign of step gets automatically inverted on decreasing indexes expect_equal(grab( x.t[ `6:2:2` ,]), x.r[ seq.int(6, 2, -2) ,]) expect_equal(grab( x.t[ 6:2:2 ,]), x.r[ seq.int(6, 2, -2) ,]) expect_equal(grab( x.t[ 6:2 ,]), x.r[ 6:2 ,]) expect_equal(grab( x.t[ 6:2:1 ,]), x.r[ 6:2 ,]) expect_equal(grab( x.t[ 6:2:-1 ,]), x.r[ 6:2 ,]) options(tensorflow.extract.style = "python") # options set to match python # helper to actually test in python test_in_python <- (function() { # main <- reticulate::import_main() reticulate::py_run_string(paste( "import numpy as np", "x = np.array(range(1, 41))", "x.shape = (2, 20)", "x = x.transpose()", sep = "\n")) function(chr) { reticulate::py_eval(chr) } })() expect_equal(grab( x.t[ 2:5,] ), test_in_python("x[2:5,]")) expect_equal(grab( x.t[ 2:-5 ,] ), test_in_python("x[ 2:-5 ,]")) expect_equal(grab( x.t[ 2:5:2 ,] ), test_in_python("x[ 2:5:2 ,]")) expect_equal(grab( x.t[ -2:-5:-1 ,] ), test_in_python("x[ -2:-5:-1 ,]")) expect_equal(grab( x.t[ 5:2:-1 ,] ), test_in_python("x[ 5:2:-1 ,]")) expect_equal(grab( x.t[ 5:2:-2 ,] ), test_in_python("x[ 5:2:-2 ,]")) # indexing with tensors expect_equal(grab( x.t[tf$constant(2L),] ), as.array(x.r[3,])) expect_equal(grab( x.t[tf$constant(2L):tf$constant(5L),] ), x.r[3:5,]) # expect warning that no translation on tensors performed null_out_all_extract_opts() expect_warning(grab( x.t[tf$constant(2L),] ), "ignored") # warn only once expect_silent(grab( x.t[tf$constant(2L),] )) # warn in slice syntax too reset_warnings() null_out_all_extract_opts() expect_warning(grab( x.t[tf$constant(2L):tf$constant(5L),] ), "ignored") reset_warnings() options(tensorflow.extract.warn_tensors_passed_asis = FALSE) expect_silent(grab( x.t[tf$constant(2L):tf$constant(5L),] )) null_out_all_extract_opts() }) # test warnings for extraction that looks like it might be 0-based test_that('extract warns when indices look 0-based', { skip_if_no_tensorflow() oopts <- options() x <- tf$constant(matrix(0, 2, 2)) i0 <- 0:1 i1 <- 1:2 # explicit 0-indexing shouldn't warn options(tensorflow.extract.one_based = FALSE) expect_silent(x[i0, i0]) # explicit 1-indexing shouldn't warn options(tensorflow.extract.one_based = TRUE) # expect_silent(x[i0, i0]) # expect error # default 1-indexing should warn only if there's a zero in there options(tensorflow.extract.one_based = NULL) expect_silent(x[i1, i1]) # expect_warning(x[i0, i0], # expect error # "It looks like you might be using 0-based indexing") options(oopts) }) test_that('extract errors when indices have missing elements at variable steps', { skip_if_no_tensorflow() x <- tf$constant(array(0, dim = c(2, 4, 2))) # indexing with sequential values shouldn't error expect_silent(x[1, c(1, 2, 3), ]) expect_error( x[1, c(1, 3, 4),]) }) # reset user's extract method # options(tensorflow.extract.one_based = old_extract_method)