# Use sparingly to minimize aws costs. # Verify all `targets` buckets are deleted afterwards. tar_test("pipeline continuously uploads metadata", { skip_if_no_aws() bucket_name <- random_bucket_name() s3 <- paws.storage::s3() s3$create_bucket(Bucket = bucket_name) on.exit(aws_s3_delete_bucket(bucket_name)) expr <- quote({ tar_option_set( resources = tar_resources( aws = tar_resources_aws(bucket = !!bucket_name, prefix = "_targets"), network = tar_resources_network(max_tries = 10L) ), repository = "aws" ) list( tar_target(a, 1), tar_target( b, { Sys.sleep(2) a } ), tar_target( c, { Sys.sleep(2) b } ), tar_target( d, { Sys.sleep(200) c } ) ) }) expr <- tar_tidy_eval(expr, environment(), TRUE) eval(as.call(list(`tar_script`, expr, ask = FALSE))) R.utils::withTimeout( expr = tar_make(seconds_meta_upload = 1, reporter = "silent"), timeout = 30, onTimeout = "silent" ) tar_destroy(destroy = "local") temp <- tempfile() meta <- path_meta(temp) aws_s3_download( file = meta, bucket = bucket_name, key = "_targets/meta/meta", max_tries = 3 ) out <- tar_meta(store = temp, targets_only = TRUE) expect_equal(sort(out$name), sort(c("a", "b", "c"))) })