tar_test("packages are actually loaded", { skip_on_cran() skip_if_not_installed("clustermq") tar_runtime$fun <- "tar_make_clustermq" on.exit(tar_runtime$fun <- NULL) options(clustermq.scheduler = "multiprocess") tar_option_set(envir = environment()) x <- tar_target_raw( "x", quote(tibble(x = "x")), packages = "tibble" ) pipeline <- pipeline_init(list(x)) out <- clustermq_init(pipeline) suppressWarnings(out$run()) exp <- tibble::tibble(x = "x") expect_equal(tar_read(x), exp) }) tar_test("clustermq iteration loop can wait for and shut down workers", { skip_on_os("windows") skip_if_not_installed("clustermq") tar_runtime$fun <- "tar_make_clustermq" on.exit(tar_runtime$fun <- NULL) on.exit(options(clustermq.scheduler = old), add = TRUE) old <- getOption("clustermq.scheduler") options(clustermq.scheduler = "multiprocess") x <- tar_target_raw("x", quote(Sys.sleep(2)), garbage_collection = TRUE) y <- tar_target_raw("y", quote(list(x, a = "x")), garbage_collection = TRUE) pipeline <- pipeline_init(list(x, y)) out <- clustermq_init(pipeline, reporter = "silent") suppressWarnings(out$run()) target <- pipeline_get_target(pipeline, "y") expect_equal(target_read_value(target)$object$a, "x") }) tar_test("nontrivial common data with multiprocess", { skip_on_cran() skip_if_not_installed("clustermq") tar_script({ options(clustermq.scheduler = "multiprocess") envir <- new.env(parent = globalenv()) evalq({ f <- function(x) { g(x) + 1L } g <- function(x) { x + 1L } }, envir = envir) tar_option_set(envir = envir) list( tar_target(x, 1), tar_target(y, f(x)) ) }) tar_make_clustermq() expect_equal(tar_read(y), 3L) }) tar_test("nontrivial globals with global environment", { skip_on_cran() skip_if_not_installed("clustermq") tar_script({ options(clustermq.scheduler = "multiprocess") f <- function(x) { g(x) + 1L } g <- function(x) { x + 1L } list( tar_target(x, 1), tar_target(y, f(x)) ) }) tar_make_clustermq() expect_equal(tar_read(y), 3L) }) tar_test("prevent high-memory data via target objects", { # Run this test once inside tar_test() (test environment) # and once outside tar_test() global environment. skip_on_cran() skip_if_not_installed("clustermq") tar_runtime$fun <- "tar_make_clustermq" on.exit(tar_runtime$fun <- NULL) options(clustermq.scheduler = "multiprocess") t <- list(tar_target(x, runif(1e7), deployment = "main", format = "qs")) pipeline <- pipeline_init(list(t[[1]], tar_target(y, x))) algo <- clustermq_init(pipeline) debug(algo$set_common_data) tar_option_set(envir = environment()) # should enter a debugger: algo$run() # In the debugger verify that the exported data is much smaller than # the value of x because we cloned the target objects in pipeline_init(). o <- self$produce_exports(envir, path_store_default()) # Exported data should be small: pryr::object_size(o) # The target object should not be in the environment. expect_true(inherits(tar_option_get("envir")$t[[1]], "tar_target")) pryr::object_size(tar_option_get("envir")$t[[1]]) # The pipeline's copy of the target object should be much larger: pryr::object_size(pipeline_get_target(self$pipeline, "x")$value$object) # The algorithm object itself should be large too, and it is not exported. pryr::object_size(self) }) tar_test("heavily parallel workload should run fast", { skip_on_cran() skip_if_not_installed("clustermq") tar_script({ library(targets) options(clustermq.scheduler = "multicore") list( tar_target( index_batch, seq_len(100), ), tar_target( data_continuous, index_batch, pattern = map(index_batch) ), tar_target( data_discrete, index_batch, pattern = map(index_batch) ), tar_target( fit_continuous, data_continuous, pattern = map(data_continuous) ), tar_target( fit_discrete, data_discrete, pattern = map(data_discrete) ) ) }) tar_make_clustermq(workers = 4) expect_equal(tar_outdated(callr_function = NULL), character(0)) }) tar_test("profile heavily parallel workload", { skip_on_cran() skip_if_not_installed("clustermq") tar_script({ library(targets) options(clustermq.scheduler = "multicore") list( tar_target( index_batch, seq_len(100), ), tar_target( data_continuous, index_batch, pattern = map(index_batch) ), tar_target( data_discrete, index_batch, pattern = map(index_batch) ), tar_target( fit_continuous, data_continuous, pattern = map(data_continuous) ), tar_target( fit_discrete, data_discrete, pattern = map(data_discrete) ) ) }) # Should deploy targets in a timely manner. proffer::pprof(tar_make_clustermq(workers = 4, callr_function = NULL)) expect_equal(tar_outdated(callr_function = NULL), character(0)) expect_equal(unname(tar_read(fit_continuous)), seq_len(100)) expect_equal(unname(tar_read(fit_discrete)), seq_len(100)) })