set.seed(1) d_reg_calibration <- dplyr::tibble(y = rnorm(100), y_pred = y / 2 + rnorm(100)) d_reg_test <- dplyr::tibble(y = rnorm(100), y_pred = y / 2 + rnorm(100)) # ------------------------------------------------------------------------------ # Columns `a` and `b` are class probability estimate columns. set.seed(1) d_bin_calibration <- dplyr::tibble(y = factor(rep(letters[1:2], each = 50)), a = runif(100)) |> dplyr::mutate(b = 1 - a, predicted = sample(y)) d_bin_test <- dplyr::tibble(y = factor(rep(letters[1:2], each = 50)), a = runif(100)) |> dplyr::mutate(b = 1 - a, predicted = sample(y)) # ------------------------------------------------------------------------------ set.seed(1) probs <- matrix(runif(2 * 3 * 3 * 50), ncol = 3) probs <- apply(probs, 1, function(x) x/sum(x)) # Columns `a`, `b`, and `c` are class probability estimate columns. d_mlt_calibration <- dplyr::tibble( y = factor(rep(letters[1:3], each = 50)), a = probs[1, 1:150], b = probs[2, 1:150], c = probs[3, 1:150] ) |> dplyr::mutate(predicted = sample(y)) d_mlt_test <- dplyr::tibble( y = factor(rep(letters[1:3], each = 50)), a = probs[1, 151:300], b = probs[2, 151:300], c = probs[3, 151:300] ) |> dplyr::mutate(predicted = sample(y))