# Run before any test suppressPackageStartupMessages(library(recipes)) suppressPackageStartupMessages(library(ggplot2)) suppressPackageStartupMessages(library(data.tree)) # ames small data data("ames", package = "modeldata") ids <- sample(nrow(ames), 256) small_ames <- ames[ids,] x <- ames[ids,-which(names(ames) == "Sale_Price")] y <- ames[ids,]$Sale_Price # ames common models ames_pretrain <- tabnet_pretrain(x, y, epoch = 2, checkpoint_epochs = 1) ames_pretrain_vsplit <- tabnet_pretrain(x, y, epochs = 3, valid_split=.2, num_steps = 1, attention_width = 1, num_shared = 1, num_independent = 1) ames_fit <- tabnet_fit(x, y, epochs = 5 , checkpoint_epochs = 2) ames_fit_vsplit <- tabnet_fit(x, y, tabnet_model=ames_pretrain_vsplit, epochs = 3, num_steps = 1, attention_width = 1, num_shared = 1, num_independent = 1) # attrition small data data("attrition", package = "modeldata") ids <- sample(nrow(attrition), 256) # attrition common models attrix <- attrition[ids,-which(names(attrition) == "Attrition")] attri_mult_x <- attrix[-which(names(attrix) == "JobSatisfaction")] attriy <- attrition[ids,]$Attrition attr_pretrained <- tabnet_pretrain(attrix, attriy, epochs = 12) attr_pretrained_vsplit <- tabnet_pretrain(attrix, attriy, epochs = 12, valid_split=0.3) attr_fitted <- tabnet_fit(attrix, attriy, epochs = 12) attr_fitted_vsplit <- tabnet_fit(attrix, attriy, epochs = 12, valid_split=0.3) # data.tree Node dataset data("acme", package = "data.tree") acme_df <- data.tree::ToDataFrameTypeCol(acme, acme$attributesAll) %>% select(-starts_with("level_")) attrition_tree <- attrition %>% tibble::rowid_to_column() %>% mutate(pathString = paste("attrition", Department, JobRole, rowid, sep = "/")) %>% select(-Department, -JobRole, -rowid) %>% data.tree::as.Node() # Run after all tests withr::defer(cleanup(), teardown_env())