require(symbolicDA) # Example 1 library(stats) data("cars",package="symbolicDA") x<-cars d<-dist_SDA(x, type="U_2") wynik<-hclust(d, method="ward", members=NULL) clusters<-cutree(wynik, 4) G1d<-index.G1d(d, clusters) print(G1d) # Example 2 data("cars",package="symbolicDA") md <- dist_SDA(cars, type="U_3", gamma=0.5, power=2) min_nc=2 max_nc=10 res <- array(0,c(max_nc-min_nc+1,2)) res[,1] <- min_nc:max_nc clusters <- NULL for (nc in min_nc:max_nc) { cl2 <- pam(md, nc, diss=TRUE) res[nc-min_nc+1,2] <- G1d <- index.G1d(md,cl2$clustering) clusters <- rbind(clusters, cl2$clustering) } print(sprintf("max G1d for %f clusters=%.3f",max(res[,2]),(min_nc:max_nc)[which.max(res[,2])])) print("clustering for max G1d") print(clusters[which.max(res[,2]),]) write.table(res,file="G1d_res.csv",sep=";",dec=",",row.names=TRUE,col.names=FALSE) plot(res, type="p", pch=0, xlab="Number of clusters", ylab="G1d", xaxt="n") axis(1, c(min_nc:max_nc))