context("test_susie.R") # test_that("susie agrees with version 0.3", with(simulate(sparse=T), { # original.res = readRDS('susiefit_original_res.rds') # original.res2 = readRDS('susiefit_original_res2.rds') # original.res3 = readRDS('susiefit_original_res3.rds') # original.res4 = readRDS('susiefit_original_res4.rds') # # original.res$Xr = as.vector(original.res$Xr) # original.res2$Xr = as.vector(original.res2$Xr) # original.res3$Xr = as.vector(original.res3$Xr) # original.res4$Xr = as.vector(original.res4$Xr) # dense.res = susie(X, y, tol=1E-2, estimate_prior_variance = FALSE) # sparse.res = susie(X.sparse, y, tol=1E-2, estimate_prior_variance = FALSE) # # dense.res2 = susie(X, y, standardize=TRUE, intercept = FALSE, tol=1E-2, estimate_prior_variance = FALSE) # sparse.res2 = susie(X.sparse, y, standardize=TRUE, intercept = FALSE, # tol=1E-2, estimate_prior_variance = FALSE) # # dense.res3 = susie(X, y, standardize=FALSE, intercept = TRUE, tol=1E-2, estimate_prior_variance = FALSE) # sparse.res3 = susie(X.sparse, y, standardize=FALSE, intercept = TRUE, # tol=1E-2, estimate_prior_variance = FALSE) # # dense.res4 = susie(X, y, standardize=FALSE, intercept = FALSE, tol=1E-2, estimate_prior_variance = FALSE) # sparse.res4 = susie(X.sparse, y, standardize=FALSE, intercept = FALSE, # tol=1E-2, estimate_prior_variance = FALSE) # expect_equal_susie(sparse.res, original.res) # expect_equal_susie(dense.res, original.res) # expect_equal_susie(sparse.res2, original.res2) # expect_equal_susie(dense.res2, original.res2) # expect_equal_susie(sparse.res3, original.res3) # expect_equal_susie(dense.res3, original.res3) # expect_equal_susie(sparse.res4, original.res4) # expect_equal_susie(dense.res4, original.res4) # }))