library(survival) # copied from https://rstudio.github.io/reticulate/articles/package.html skip_if_no_pycox <- function() { if (!reticulate::py_module_available("torch") || !reticulate::py_module_available("pycox") || !reticulate::py_module_available("numpy")) skip("One of torch, numpy, pycox not available for testing.") } sanity_check <- function(model, pars) { skip_if_not_installed("distr6") set.seed(42) if (model != "akritas") { set_seed(42) } train <- simsurvdata(500, cens = 0.1) test <- simsurvdata(50, cens = 0.1) y <- survival::Surv(test$time, test$status) fit <- do.call( get(model), c(list(formula = Surv(time, status) ~ ., data = train), pars) ) p <- predict(fit, newdata = test, type = "all", distr6 = TRUE, return_method = "discrete") if (model != "parametric") { expect_equal(length(p$risk), nrow(distr6::gprm(p$surv, "cdf"))) } p <- predict(fit, newdata = test, type = "all", distr6 = FALSE, return_method = "discrete") expect_equal(length(p$risk), nrow(p$surv)) } expect_rounded_equal <- function(actual, expected, n = 4) { expect_equal(round(actual, n), round(expected, n)) }