R Under development (unstable) (2024-12-13 r87441 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > # > # Formal test of the quantile routine for survfit > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # There are 8 cases: strata Y/N, ncol(surv) >1, conf.int = T/F > # Subcase: the quantile exactly agrees with a horizontal segment of > # the curve or not. > # First do the 4 cases where fit$surv is a vector > # > test1 <- data.frame(time= c(9, 3,1,1,6,6,8, 10), + status=c(1,NA,1,0,1,1,0, 0), + x= c(0, 2,1,1,1,0,0, 0)) > > # True survival = (6/7) * (3/5) * (1/2) for overall > # The q's are chosen to include a point < first jump, mid, after last jump, > # and exact intersections with the "flats" of the curve. > # > qq <- c(13/14, 6/7, 2/3, .5, 9/35, .1) > > # Nothing on the right hand side, simple survival (no strata) > fit1 <- survfit(Surv(time, status) ~ 1, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), c(1, 3.5, 6, 9, 9.5, NA)) #without conf.int [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ 1, test1) #with conf.int > aeq(quantile(fit2, 1-qq), + list(quantile = c(1, 3.5, 6, 9, 9.5, NA), + lower = c(1,1,1,6,6,9), + upper = rep(as.numeric(NA), 6)), check.attributes=FALSE) [1] TRUE > aeq(quantile(fit2, 1-qq, FALSE), c(1, 3.5, 6, 9, 9.5, NA)) [1] TRUE > > > # Now a variable on the right (strata in the result) > # curve 0: (t=6, S=3/4), (t=9, S=3/8) > # curve 1: (t=1, S=2/3), (t=6, S= 0) > fit1 <- survfit(Surv(time, status) ~ x, test1, conf.type='none') > aeq(quantile(fit1, 1-qq), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > fit2 <- survfit(Surv(time, status) ~ x, test1) > aeq(quantile(fit2, 1-qq, FALSE), + matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > > temp <- quantile(fit2, 1-qq) > aeq(temp$quantile, matrix(c(6,6,9,9,NA,NA, 1,1,3.5, 6,6,6), nrow=2, byrow=T)) [1] TRUE > aeq(temp$lower, matrix(c(6,6,6,6,9,9, 1,1,1,1, NA,NA), nrow=2, byrow=T)) [1] TRUE > aeq(temp$upper, rep(as.numeric(NA), 12)) [1] TRUE > > # Second major case set -- a survfit object where fit$surv is a matrix > # This arises from coxph models > # There is only 1 subject with ph.ecog=3 which is a nice edge case > cfit <- coxph(Surv(time, status) ~ age + strata(ph.ecog), lung) > sfit <- survfit(cfit, newdata=data.frame(age=c(50, 70))) > qtot <- quantile(sfit, qq) > for (i in 1:4) { + for (j in 1:2) { + temp <- quantile(sfit[i,j], qq) + print(c(aeq(qtot$quantile[i,j,], temp$quantile), + aeq(qtot$upper[i,j,], temp$upper), + aeq(qtot$lower[i,j,], temp$lower))) + } + } [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE [1] TRUE TRUE TRUE > temp <- quantile(sfit, qq, conf.int=FALSE) > all.equal(qtot$quantile, temp) [1] TRUE > > > > > > proc.time() user system elapsed 0.79 0.14 0.92