R Under development (unstable) (2024-12-12 r87438 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > aeq <- function(x,y,...) all.equal(as.vector(x), as.vector(y),...) > > # > # Test out the results for competing risks. Survfit does this directly as just > # one case of the Aalen-Johansen, but also known as 'cumulative incidence'. > # > # First trivial test > tdata <- data.frame(time=c(1,2,2,3,3,3,5,6), + status = c(0,1,0,1,0,1,0,1), + event = c(1,1,2,2,1,2,3,2), + grp = c(1,2,1,2,1,2,1,2), + id = 1:8) > old <- survfit(Surv(time, status*event, type="mstate") ~1, tdata) #old style > fit <- survfit(Surv(time, factor(status*event)) ~1, tdata) > > # test that the old (should be depricated) form gives the same answer > indx <- match("call", names(fit)) > all.equal(unclass(old)[-indx], unclass(fit)[-indx]) [1] TRUE > > byhand <- function() { + #everyone starts in state 0 + p1 <- c(1,0,0) + + p2 <- c(6/7, 1/7, 0) # 0-1 transition at time 2 + u2 <- matrix(rep(c(1/49, -1/49, 0), each=8), ncol=3) #leverage matrix at time 2 + u2[1,] <- 0 #subject 1 is not present + u2[2,1:2] <- u2[2, 1:2] + c(-1/7, 1/7) + + p3 <- c((6/7)*(3/5), 1/7, 12/35) # 0-2 transition at time 3, 5 at risk + h3 <- matrix(c(3/5, 0, 2/5, 0,1,0, 0,1,0), byrow=T, ncol=3) #hazard mat + u3 <- u2 %*% h3 + u3[4:8,1] <- u3[4:8,1] + p2[1]*2/25 + u3[4:8,3] <- u3[4:8,3] -p2[1]*2/25 + u3[4,] <- u3[4,] + c(-p2[1]/5, 0, p2[1]/5) + u3[6,] <- u3[4,] + + p6 <- c(0, 1/7, 6/7) # 0-2 at time 6, 1 at risk + h6 <- matrix(c(-1,0,1,0,1,0,0,1,0), byrow=T, ncol=3) + u6 <- cbind(0, u3[,2], -u3[,2]) + + V <- rbind(0, colSums(u2^2), + colSums(u3^2), + colSums(u3^2), + colSums(u6^2)) + list(P=rbind(p1, p2, p3, p3, p6), u2=u2, u3=u3, u6=u6, V=V) + } > bfit <- byhand() > aeq(fit$pstate, bfit$P) [1] TRUE > aeq(fit$n.risk[,1], c(8,7,5,2,1)) [1] TRUE > aeq(fit$n.event[,2:3], c(0,1,0,0,0, 0,0 ,2,0,1)) [1] TRUE > aeq(fit$std.err, sqrt(bfit$V)) [1] TRUE > > # Check the influence directly, per row > eps <- 1e-6 > deltaU <- array(0, dim= c(nrow(tdata), dim(fit$pstate))) > deltaC <- array(0, dim= c(nrow(tdata), dim(fit$cumhaz))) > deltaA <- deltaU > auc <- function(fit) { + nr <- length(fit$time) + rbind(fit$p0*fit$time[1], + apply(diff(fit$time) * fit$pstate[-nr,], 2, cumsum)) + } > for (i in 1:nrow(tdata)) { + twt <- rep(1, nrow(tdata)) + twt[i] <- twt[i] + eps + tfit <- survfit(Surv(time, factor(status*event)) ~1, tdata, id=id, + weights= twt) + deltaU[i,,] <- (tfit$pstate - fit$pstate)/eps # approx derivative + deltaC[i,,] <- (tfit$cumhaz - fit$cumhaz)/eps + deltaA[i,,] <- (auc(tfit) - auc(fit))/eps + } > aeq(bfit$u2, deltaU[,2,], tol=eps) [1] TRUE > aeq(bfit$u3, deltaU[,3,], tol=eps) [1] TRUE > aeq(bfit$u6, deltaU[,5,], tol=eps) [1] TRUE > > sqmean <- function(x) sqrt(sum(x^2)) > aeq(fit$std.chaz, apply(deltaC, 2:3, sqmean), tol=eps) [1] TRUE > aeq(fit$std.err, apply(deltaU, 2:3, sqmean), tol=eps) [1] TRUE > aeq(fit$std.auc, apply(deltaA, 2:3, sqmean), tol=eps) [1] TRUE > > # Times purposely has values that are before the start, exact, intermediate > # and after the end of the observed times > sfit <- summary(fit, times=c(0, 1, 3.5, 6, 7), extend=TRUE) > aeq(sfit$pstate, rbind(c(1,0,0), bfit$P[c(1,3,5,5),])) [1] TRUE > aeq(sfit$n.risk[,1], c(8,8, 2, 1, 0)) [1] TRUE > aeq(sfit$n.event, matrix(c(0,0,0,0,0, 0,0,1,0,0, 0,0,2,1,0), ncol=3)) [1] TRUE > > # > # For this we need the competing risks MGUS data set, first > # event > # > tdata <- mgus1[mgus1$enum==1,] > # Ensure the old-style call using "etype" works (backwards compatability) > fit1 <- survfit(Surv(stop, status) ~ 1, etype=event, tdata) > fit1b <-survfit(Surv(stop, event) ~1, tdata) > indx <- match("call", names(fit1)) > all.equal(unclass(fit1)[-indx], unclass(fit1b)[-indx]) [1] TRUE > > # Now get the overall survival, and the hazard for progression > fit2 <- survfit(Surv(stop, status) ~1, tdata) #overall to "first bad thing" > fit3 <- survfit(Surv(stop, status*(event=='pcm')) ~1, tdata, + type='fleming') > fit4 <- survfit(Surv(stop, status*(event=='death')) ~1, tdata, + type='fleming') > > aeq(fit1$n.risk[,1], fit2$n.risk) [1] TRUE > aeq(rowSums(fit1$n.event), fit2$n.event) [1] TRUE > > # Classic CI formula > # integral [hazard(t) S(t-0) dt], where S= "survival to first event" > haz1 <- diff(c(0, -log(fit3$surv))) #Aalen hazard estimate for progression > haz2 <- diff(c(0, -log(fit4$surv))) #Aalen estimate for death > tsurv <- c(1, fit2$surv[-length(fit2$surv)]) #lagged survival > ci1 <- cumsum(haz1 *tsurv) > ci2 <- cumsum(haz2 *tsurv) > aeq(cbind(ci1, ci2), fit1$pstate[,2:3]) [1] TRUE > > # > # Now, make sure that it works for subgroups > # > fit1 <- survfit(Surv(stop, event) ~ sex, tdata) > fit2 <- survfit(Surv(stop, event) ~ 1, tdata, + subset=(sex=='female')) > fit3 <- survfit(Surv(stop, event) ~ 1, tdata, + subset=(sex=='male')) > > aeq(fit2$pstate, fit1$pstate[1:fit1$strata[1],]) [1] TRUE > aeq(fit2$std, fit1$std[1:fit1$strata[1],]) [1] TRUE > aeq(fit3$pstate, fit1$pstate[-(1:fit1$strata[1]),]) [1] TRUE > > # A second test of cumulative incidence > # compare results to Bob Gray's functions > # The file gray1 is the result of > # library(cmprsk) > # tstat <- ifelse(tdata$status==0, 0, 1+ (tdata$event=='death')) > # gray1 <- cuminc(tdata$stop, tstat) > load("gray1.rda") > fit2 <- survfit(Surv(stop, event) ~ 1, tdata) > > if (FALSE) { + # lines of the two graphs should overlay + plot(gray1[[1]]$time, gray1[[1]]$est, type='l', + ylim=range(c(gray1[[1]]$est, gray1[[2]]$est)), + xlab="Time") + lines(gray1[[2]]$time, gray1[[2]]$est, lty=2) + matlines(fit2$time, fit2$pstate, col=2, lty=1:2, type='s') + } > # To formally match these is a bit of a nuisance. > # The cuminc function returns a full step function, and survfit only > # the bottoms of the steps. > temp1 <- tapply(gray1[[1]]$est, gray1[[1]]$time, max)[-1] #toss time 0 > indx1 <- match(names(temp1), fit2$time) > aeq(temp1, fit2$pstate[indx1,2]) [1] TRUE > > > proc.time() user system elapsed 0.93 0.09 1.03