R Under development (unstable) (2024-12-12 r87438 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > > # start with the example used in chapter 2 of the book > > bdata <- data.frame(time = c(1, 2, 2, 3, 4, 4, 5, 5, 8, 8, + 9, 10,11, 12,14, 15, 16, 16, 18, 20), + status = c(1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, + 0, 0, 1, 0, 0, 1, 0, 1, 0)) > > # First check: verify that the the RTTR reproduces the KM > kfit <- survfit(Surv(time, status) ~1, bdata) > bwt <- rttright(Surv(time, status) ~1, bdata, renorm= FALSE) > > cdf <- cumsum(bwt)/nrow(bdata) # weighted CDF > cdf <- cdf[!duplicated(bdata$time, fromLast=TRUE)] # remove duplicates > all.equal(kfit$surv, 1-cdf) [1] TRUE > > > # A covariate divides both survfit and rttr into disjoint groups, so repeat > # the above check on subsets of the aml data > afit <- survfit(Surv(time, status) ~x, aml) > awt <- rttright(Surv(time, status) ~x, aml, renorm=TRUE) > > igroup <- as.numeric(aml$x) > for (i in 1:2) { + atemp <- awt[igroup ==i] # subset for this curve + index <- order(aml$time[igroup ==i]) + acdf <- cumsum(atemp[index]) + acdf <- acdf[!duplicated(aml$time[igroup ==i], fromLast=TRUE)] + print(all.equal(afit[i]$surv, 1-acdf)) + } [1] TRUE [1] TRUE > > > ########### > # Alternate computation using inverse prob of censoring weights. > # First shift the censorings to avoid ties: if there is a death and a censor > # at time 10, say, the death was not at risk of censoring. Censoring weights > # happen "later". This also results in a left-continuous curve. > delta <- min(diff(sort(unique(bdata$time)))) /3 > offset <- ifelse(bdata$status==1, 0, delta) > cfit <- survfit(Surv(time+ offset, 1-status) ~ 1, bdata) > > # interpolate > indx <- findInterval(bdata$time, cfit$time) > cwt <- ifelse(bdata$status==0, 0, 1/cfit$surv[indx]) > all.equal(bwt, cwt) [1] TRUE > > # Multiple time points, this example is used in the vignette > tdata <- data.frame(time= c(1,2,2,3,4,4,5,5,8,9), + status= c(1,1,0,1,0,0,1,0,1,1)) > fit1 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=FALSE) > fit2 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=TRUE) > all.equal(fit1, 10*fit2) [1] TRUE > all.equal(fit1, cbind(7, c(7,7,0,8,8,8,8,8,8,8), + c(7,7,0,8,8,8,8,8,8,8), + c(7,7,0,8,0,0,12,12,12,12), + c(7,7,0,8,0,0,12, 0, 18,18))/7, check.attributes=FALSE) [1] TRUE > > # Now test with (start, stop] data, should get the same results > b2 <- survSplit(Surv(time, status) ~ 1, bdata, cut= c(3,5, 7, 14), + id = "subject") > indx <- c(seq(1, 65, by=2), seq(64, 2, by= -2)) > b2 <- b2[indx,] # not in time within subject order (stronger test) > > b2wt <- rttright(Surv(tstart, time, status) ~1, b2, id=subject) > indx2 <- order(b2$time) > cdf2 <- cumsum(b2wt[indx2]) > cdf2 <- cdf2[!duplicated(b2$time[indx2], fromLast=TRUE)] # remove duplicates > utime2 <- sort(unique(b2$time)) # will have an extra time 7 > utime1 <- sort(unique(bdata$time)) > all.equal(cdf2[match(utime1, utime2)], cdf) [1] TRUE > > > # Competing risks > mdata <- mgus2 > mdata$etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) > mdata$estat <- with(mgus2, ifelse(pstat==1, 1, 2*death)) > mdata$estat <- factor(mdata$estat, 0:2, c('censor', 'pcm', 'death')) > mfit <- survfit(Surv(etime, estat) ~1, mdata, id=id, time0=FALSE) > mwt1 <- rttright(Surv(etime, estat) ~1, mdata, id=id) > > morder <- order(mdata$etime) > mdata2 <- mdata[morder,] > mwt2 <- rttright(Surv(etime,estat) ~1, mdata2, id=id) > all.equal(mwt1[morder], mwt2) [1] TRUE > > keep <- !duplicated(mdata2$etime, fromLast=TRUE) > csum1 <- cumsum(ifelse(mdata2$estat=="pcm", mwt2, 0)) > csum2 <- cumsum(ifelse(mdata2$estat=="death", mwt2, 0)) > > all.equal(mfit$pstate[,2], csum1[keep]) [1] TRUE > all.equal(mfit$pstate[,3], csum2[keep]) [1] TRUE > > # Case weights, at multiple times > bwt <- rep(1:2, length=nrow(bdata)) > tm <- c(2, 6, 10, 15, 18) > fit1 <- rttright(Surv(time, status) ~1, bdata, weights=bwt, times= tm) > casefit <- survfit(Surv(time, status) ~ 1, bdata, weights= bwt) > csum1 <- summary(casefit, censor=FALSE, times= tm) > for (i in 1:length(tm)) { + c1 <- sum(fit1[bdata$status==1 & bdata$time <= tm[i], i]) + print(all.equal(c1, 1-csum1$surv[i])) + } [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE > > > > proc.time() user system elapsed 0.93 0.09 1.01