R Under development (unstable) (2024-12-12 r87438 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > > # Check that estimates from a multi-state model agree with single state models > # Use a simplified version of the myeloid data set > tdata <- tmerge(myeloid[,1:3], myeloid, id=id, death=event(futime,death), + priortx = tdc(txtime), sct= event(txtime)) > tdata$event <- factor(with(tdata, sct + 2*death), 0:2, + c("censor", "sct", "death")) > fit <- coxph(Surv(tstart, tstop, event) ~ trt + sex, tdata, id=id, + iter=4, x=TRUE, robust=FALSE) > > # Multi-state now defaults to breslow rather than efron > fit12 <- coxph(Surv(tstart, tstop, event=='sct') ~ trt + sex, tdata, + subset=(priortx==0), iter=4, x=TRUE, method='breslow') > fit13 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, + subset=(priortx==0), iter=4, x=TRUE, method= 'breslow') > fit23 <- coxph(Surv(tstart, tstop, event=='death') ~ trt + sex, tdata, + subset=(priortx==1), iter=4, x=TRUE, method="breslow") > aeq(coef(fit), c(coef(fit12), coef(fit13), coef(fit23))) [1] TRUE > aeq(fit$loglik, fit12$loglik + fit13$loglik + fit23$loglik) [1] TRUE > temp <- matrix(0, 6,6) > temp[1:2, 1:2] <- fit12$var > temp[3:4, 3:4] <- fit13$var > temp[5:6, 5:6] <- fit23$var > aeq(fit$var, temp) [1] TRUE > > # check out model.frame > fita <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id) > fitb <- coxph(Surv(tstart, tstop, event) ~ trt, tdata, id=id, model=TRUE) > all.equal(model.frame(fita), fitb$model) [1] "Component \"trt\": 'current' is not a factor" > # model.frame fails due to an interal rule in R, factors vs characters > # result when the xlev arg is in the call. So model.frame(fita) has trt > # as a factor, not character. > > #check residuals > indx1 <- which(fit$rmap[,2] ==1) > indx2 <- which(fit$rmap[,2] ==2) > indx3 <- which(fit$rmap[,2] ==3) > aeq(residuals(fit), c(residuals(fit12), residuals(fit13), residuals(fit23))) [1] TRUE > aeq(residuals(fit)[indx1], residuals(fit12)) [1] TRUE > aeq(residuals(fit)[indx2], residuals(fit13)) [1] TRUE > aeq(residuals(fit)[indx3], residuals(fit23)) [1] TRUE > > # score residuals > temp <- residuals(fit, type='score') > aeq(temp[indx1, 1:2], residuals(fit12, type='score')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='score')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='score')) [1] TRUE > > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > > temp <- residuals(fit, type="dfbeta") > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > aeq(temp[indx1, 1:2], residuals(fit12, type='dfbeta')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='dfbeta')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='dfbeta')) [1] TRUE > > temp <- residuals(fit, type="dfbetas") > all(temp[indx1, 3:6] ==0) [1] TRUE > all(temp[indx2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[indx3, 1:4]==0) [1] TRUE > aeq(temp[indx1, 1:2], residuals(fit12, type='dfbetas')) [1] TRUE > aeq(temp[indx2, 3:4], residuals(fit13, type='dfbetas')) [1] TRUE > aeq(temp[indx3, 5:6], residuals(fit23, type='dfbetas')) [1] TRUE > > # Schoenfeld and scaled shoenfeld have one row per event > sr1 <- residuals(fit12, type="schoenfeld") > sr2 <- residuals(fit13, type="schoenfeld") > sr3 <- residuals(fit23, type="schoenfeld") > end <- rep(1:3, c(nrow(sr1), nrow(sr2), nrow(sr3))) > temp <- residuals(fit, type="schoenfeld") > aeq(temp[end==1, 1:2], sr1) [1] TRUE > aeq(temp[end==2, 3:4], sr2) [1] TRUE > aeq(temp[end==3, 5:6], sr3) [1] TRUE > all(temp[end==1, 3:6] ==0) [1] TRUE > all(temp[end==2, c(1,2,5,6)] ==0) [1] TRUE > all(temp[end==3, 1:4] ==0) [1] TRUE > > > #The scaled Schoenfeld don't agree, due to the use of a robust > # variance in fit, regular variance in fit12, fit13 and fit23 > #Along with being scaled by different event counts > xfit <- fit > xfit$var <- xfit$naive.var > if (FALSE) { + xfit <- fit + xfit$var <- xfit$naive.var # fixes the first issue + temp <- residuals(xfit, type="scaledsch") + aeq(d1* temp[sindx1, 1:2], residuals(fit12, type='scaledsch')) + aeq(temp[sindx2, 3:4], residuals(fit13, type='scaledsch')) + aeq(temp[sindx3, 5:6], residuals(fit23, type='scaledsch')) + } > > if (FALSE) { # the predicted values are a work in progress + # predicted values differ because of different centering + c0 <- sum(fit$mean * coef(fit)) + c12 <- sum(fit12$mean * coef(fit12)) + c13 <- sum(fit13$mean* coef(fit13)) + c23 <- sum(fit23$mean * coef(fit23)) + + aeq(predict(fit)+c0, c(predict(fit12)+c12, predict(fit13)+c13, + predict(fit23)+c23)) + aeq(exp(predict(fit)), predict(fit, type='risk')) + + # expected survival is independent of centering + aeq(predict(fit, type="expected"), c(predict(fit12, type="expected"), + predict(fit13, type="expected"), + predict(fit23, type="expected"))) + } > # predict(type='terms') is a matrix, centering changes as well > if (FALSE) { + temp <- predict(fit, type='terms') + all(temp[indx1, 3:6] ==0) + all(temp[indx2, c(1,2,5,6)] ==0) + all(temp[indx3, 1:4]==0) + aeq(temp[indx1, 1:2], predict(fit12, type='terms')) + aeq(temp[indx2, 3:4], predict(fit13, type='terms')) + aeq(temp[indx3, 5:6], predict(fit23, type='terms')) + } # end of prediction section > > # The global and per strata zph tests will differ for the KM or rank > # transform, because the overall and subset will have a different list > # of event times, which changes the transformed value for all of them. > # But identity and log are testable. > test_a <- cox.zph(fit, transform="log",global=FALSE) > test_a12 <- cox.zph(fit12, transform="log",global=FALSE) > test_a13 <- cox.zph(fit13, transform="log", global=FALSE) > test_a23 <- cox.zph(fit23, transform="log", global=FALSE) > aeq(test_a$y[test_a$strata==1, 1:2], test_a12$y) [1] TRUE > > aeq(test_a$table[1:2,], test_a12$table) [1] TRUE > aeq(test_a$table[3:4,], test_a13$table) [1] TRUE > aeq(test_a$table[5:6,], test_a23$table) [1] TRUE > > # check cox.zph fit - transform = 'identity' > test_b <- cox.zph(fit, transform="identity",global=FALSE) > test_b12 <- cox.zph(fit12, transform="identity",global=FALSE) > test_b13 <- cox.zph(fit13, transform="identity", global=FALSE) > test_b23 <- cox.zph(fit23, transform="identity", global=FALSE) > > aeq(test_b$table[1:2,], test_b12$table) [1] TRUE > aeq(test_b$table[3:4,], test_b13$table) [1] TRUE > aeq(test_b$table[5:6,], test_b23$table) [1] TRUE > > # check out subscripting of a multi-state zph > cname <- c("table", "x", "time", "y", "var") > sapply(cname, function(x) aeq(test_b[1:2]$x, test_b12$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > sapply(cname, function(x) aeq(test_b[3:4]$x, test_b13$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > sapply(cname, function(x) aeq(test_b[5:6]$x, test_b23$x)) table x time y var TRUE TRUE TRUE TRUE TRUE > > # check model.matrix > mat1 <- model.matrix(fit) > all.equal(mat1, fit$x) [1] TRUE > > # Check that the internal matix agrees (uses stacker, which is not exported) > mat2 <- model.matrix(fit12) > mat3 <- model.matrix(fit13) > mat4 <- model.matrix(fit23) > > # first reconstruct istate > tcheck <- survcheck(Surv(tstart, tstop, event) ~ 1, tdata, id=id) > temp <- survival:::stacker(fit$cmap, fit$smap, as.numeric(tcheck$istate), fit$x, + fit$y, NULL, fit$states) > aeq(temp$X[temp$transition==1, 1:2], mat2) [1] TRUE > aeq(temp$X[temp$transition==2, 3:4], mat3) [1] TRUE > aeq(temp$X[temp$transition==3, 5:6], mat4) [1] TRUE > > > > proc.time() user system elapsed 1.00 0.12 1.10