R Under development (unstable) (2024-12-09 r87433 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) > # > # Tests of the residuals.survfit function > # > # The influence argument of survfit returns all the residuals at every time > # point, but for large data sets the result will be huge. This function uses > # a different algorithm which will be faster when the number of time > # points being reported out is small. > > # Start with small data sets and work up. First simple survival. > test1 <- data.frame(time= c(9, 3,1,1,6,6,8), + status=c(1,NA,1,0,1,1,0), + x= c(0, 2,1,1,1,0,0)) > indx <- order(test1$time[!is.na(test1$status)]) > > s1 <- survfit(Surv(time, status) ~1, test1, influence=3) > # true influence for survival and hazard, in time order > inf1 <- matrix(c(-20, rep(4,5), -10, 2, -13, -13, 17, 17, + rep(0,6))/144, ncol=3, + dimnames=list(1:6, c(1,6,9))) > inf2 <- matrix(c(10, rep(-2,5), 10, -2, 7,7, -11, -11)/72, + ncol=2) > aeq(s1$influence.surv[indx,], inf1[, c(1,2,2,3)]) [1] TRUE > aeq(s1$influence.chaz[indx,], inf2[,c(1,2,2,2)]) [1] TRUE > > r1 <- resid(s1, times=c(0, 3, 5, 8, 10)) > all(r1[,1] ==0) [1] TRUE > aeq(r1[indx,2:5], inf1[,c(1,1,2,3)]) [1] TRUE > > r2 <- resid(s1, times=c(0, 3, 5, 8, 10), type="cumhaz") > all(r2[,1] ==0) [1] TRUE > aeq(r2[indx,2:5], inf2[,c(1,1,2,2)]) [1] TRUE > > # AUC is a sum of rectangles, height= S, width based on time points, > # so the leverage is a weighted sum of dfbeta values for S > r3 <- resid(s1, times=c(1,4, 8, 10), type="sojourn") > inf3 <- inf1 %*% cbind(c(0,0,0), c(3,0,0), c(5,2,0), c(5,3,1)) > aeq(r3[indx,], inf3) [1] TRUE > > # exp(Nelson-Aalen) > s2 <- survfit(Surv(time, status) ~1, test1, stype=2, influence=3) > r4 <- resid(s2, times=c(0, 3, 5, 8, 10), type="pstate") > inf4 <- -inf2[, c(1,2,2)] %*% diag(s2$surv[c(1,2,4)]) > aeq(r4[indx,2:5], inf4[,c(1,1,2,3)]) [1] TRUE > aeq(s2$influence.surv[indx,], inf4[,c(1,2,2,3)]) [1] TRUE > > r5 <- resid(s2, times=c(1,4, 8, 10), type="sojourn") > inf5 <- inf4 %*% cbind(c(0,0,0), c(3,0,0), c(5,2,0), c(5,3,1)) > aeq(r5[indx,], inf5) [1] TRUE > > # Fleming-Harrington > # This one is hard, the code still fails > s3 <- survfit(Surv(time, status) ~1, test1, ctype=2, influence=2) > inf6 <- matrix(c( rep(c(5, -1), c(1, 5))/36, c(5,-1)/36, + c(21,21,-29, -29)/144), ncol=2) > # r6 <- resid(s3, times =c(0, 3, 5, 8, 10), type="cumhaz") > > # Part 2: single state, with start/stop data, multiple curves, > # second curve is identical to test1 > # Then put it out of order. > > test2 <- data.frame(t1 =c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, + 0,0,0,0,0,0), + t2 =c(2, 3, 6, 7, 8, 9, 9, 9,14, 17, + 9, 1, 1, 6, 6, 8), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, + 1, 1, 0, 1, 1, 0), + x = rep(1:2, c(10, 6)), + id = 1:16) > > s4 <- survfit(Surv(t1, t2, event) ~ x, test2, influence=TRUE) > r6 <- resid(s4, time=c(4, 8, 10), type="surv") > aeq(r6[1:10,], s4$influence.surv[[1]][,c(2, 5, 6)]) [1] TRUE > aeq(r6[11:16,],s4$influence.surv[[2]][,c(1,3, 4)]) [1] TRUE > aeq(r6[11:16,2:3], r1[,4:5]) [1] TRUE > > r7 <- resid(s4, time=c(4, 8, 10), type="cumhaz") > aeq(r7[1:10,], s4$influence.chaz[[1]][,c(2, 5, 6)]) [1] TRUE > aeq(r7[11:16,],s4$influence.chaz[[2]][,c(1,3, 4)]) [1] TRUE > aeq(r7[11:16, 2:3], r2[,4:5]) [1] TRUE > > # Compute the AUC at times 8 and 10, the first is a reporting time, the > # second is in between > r8 <- resid(s4, time= c(8, 10), type="auc") > aeq(r8[11:16,], r3[,3:4]) [1] TRUE > > # curve1: > inf1 <- s4$influence.surv[[1]] > d1 <- inf1[,1:4] %*% diff(s4$time[1:5]) > d2 <- inf1[,1:6] %*% diff(c(s4$time[1:6], 10)) > aeq(cbind(d1, d2), r8[1:10,]) [1] TRUE > > # curve2: > inf2 <- s4$influence.surv[[2]] > d3 <- inf2[,1:2] %*% diff(s4$time[9:11]) > d4 <- inf2[,1:4] %*% diff(c(s4$time[9:12], 10)) > aeq(cbind(d3, d4), r8[11:16,]) [1] TRUE > > # scramble the data > reord <- c(1,3,5,7,9,11,13, 15,2,4,6,8,10,12,14,16) > test2b <-test2[reord,] > s5 <- survfit(Surv(t1, t2, event) ~x, test2b, influence=TRUE) > r9 <- resid(s5, time=c(4, 8, 10), type="surv") > aeq(r6[reord,], r9) [1] TRUE > > # > # For multistate use the same data set as mstate.R, where results have been > # worked out by hand. Except, make it harder by adding an initial state. > # > tdata <- data.frame(id= LETTERS[3*c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5)], + t1= c(0, 4, 9, 1, 2, 0, 2, 8, 1, 3), + t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), + st= c(1, 2, 1, 2, 3, 1, 3, 0, 3, 0), + i0= c(1, 2, 3, 2, 1, 1, 2, 4, 3, 4), + wt= 1:10) > > tdata$st <- factor(tdata$st, c(0:3), + labels=c("censor", "a", "b", "c")) > tdata$i0 <- factor(tdata$i0, 1:4, + labels=c("entry", "a", "b", "c")) > if (FALSE) { + #useful picture + check <- survcheck(Surv(t1, t2, st) ~1, tdata, istate=i0, id=id) + plot(c(0,11), c(1,5.5), type='n', xlab="Time", ylab= "Subject") + tdata$idx <- as.numeric(factor(tdata$id)) + with(tdata, segments(t1+.1, idx, t2, idx, col=as.numeric(check$istate))) + with(subset(tdata, st!= "censor"), + text(t2, idx+.15, as.character(st))) + with(tdata, text((t1+t2)/2, idx+.25, wt)) + with(subset(tdata, !duplicated(id)), + text(t1, idx+.15, as.character(i0))) + #segments are colored by current state, case weight in center, events at ends + abline(v=c(2:5, 8:11), lty=3, col='gray') + } > > tfun <- function(data=tdata) { + reorder <- c(10, 9, 1, 2, 5, 4, 3, 7, 8, 6) + new <- data[reorder,] + new + } > mtest2 <- tfun(tdata) # scrambled version > > mfit1 <- survfit(Surv(t1, t2, st) ~ 1, tdata, id=id, istate=i0, + influence=1) > > test1 <- resid(mfit1, times= mfit1$time, collapse=TRUE) > aeq(test1, aperm(mfit1$influence, c(1,3,2))) [1] TRUE > aeq(sqrt(apply(test1^2, 2:3, sum)), t(mfit1$std.err)) [1] TRUE > > test1a <- resid(mfit1, times=c(3, 7, 9), method=1, collapse=TRUE) > minf <- aperm(mfit1$influence, c(1,3,2)) # influence has time second, resid third > aeq(test1a, minf[,,c(2,4,6)]) # interpolated times work [1] TRUE > > test2 <- resid(mfit1, times= mfit1$time, collapse=TRUE, type="cumhaz") > aeq(sqrt(apply(test2^2, 2:3, sum)), t(mfit1$std.chaz)) [1] TRUE > test3 <- resid(mfit1, times= mfit1$time, collapse=TRUE, type="auc") > aeq(sqrt(apply(test3^2, 2:3, sum)), t(mfit1$std.auc)) [1] TRUE > > # Do a couple AUC by hand > atime <- c(1, 5.6, 8.1, 15) > test4 <- resid(mfit1, times=atime, type="auc", collapse=TRUE) > all(test4[,,1] ==0) # before the first time [1] TRUE > # 5.6 covers rectangles of widths 1,1,1, and .6 after times 2, 3,4 and 5 > temp <- apply(test1, 1:2, function(x) sum(x*c(1,1,1, .6, 0,0,0,0))) > aeq(temp, test4[,,2]) [1] TRUE > temp <- apply(test1, 1:2, function(x) sum(x*c(1,1,1, 3, .1, 0, 0, 0))) > aeq(temp, test4[,,3]) [1] TRUE > temp <- apply(test1, 1:2, function(x) sum(x*c(1,1,1, 3, 1, 1, 1, 4))) > aeq(temp, test4[,,4]) [1] TRUE > > # > # competing risks > # > mdata <- mgus2 > mdata$etime <- with(mdata, ifelse(pstat==1, ptime, futime)) > temp <- with(mdata, ifelse(pstat==1, 1, 2*death)) > mdata$event <- factor(temp, 0:2, c("censor", "PCM", "Death")) > mfit <- survfit(Surv(etime, event) ~1, mdata, influence=1) > rr <- resid(mfit, time=360) > index <- sum(mfit$time <= 360) > aeq(mfit$influence.pstate[,index,], rr) [1] TRUE > > > proc.time() user system elapsed 0.85 0.12 0.96