options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test out subscripting in the case of a coxph survival curve # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), data=lung) surv1 <- survfit(fit) temp <- surv1[2:3] which <- cumsum(surv1$strata) zed <- (which[1]+1):(which[3]) aeq(surv1$surv[zed], temp$surv) aeq(surv1$time[zed], temp$time) # This call should not create a model frame in the code -- so same # answer but a different path through the underlying code fit <- coxph(Surv(time, status) ~ age + sex + meal.cal + strata(ph.ecog), x=T, data=lung) surv2 <- survfit(fit) all.equal(surv1, surv2) # Test summary dummy <- data.frame(age=c(50,60), sex=1:2, meal.cal=c(650, 1200)) surv3 <- survfit(fit, newdata= dummy) summ <- summary(surv3, time= 1:3 * 100) # # Now a result with a matrix of survival curves # dummy <- data.frame(age=c(30,40,60), sex=c(1,2,2), meal.cal=c(500, 1000, 1500)) surv2 <- survfit(fit, newdata=dummy) zed <- 1:which[1] aeq(surv2$surv[zed,1], surv2[1,1]$surv) aeq(surv2$surv[zed,2], surv2[1,2]$surv) aeq(surv2$surv[zed,3], surv2[1,3]$surv) aeq(surv2$surv[zed, ], surv2[1,1:3]$surv) aeq(surv2$surv[zed], (surv2[1])$surv) aeq(surv2$surv[zed, ], surv2[1, ]$surv) # And the depreciated form - call with a named vector as 'newdata' # the resulting $call component won't match so delete it before comparing # newdata will have mismatched row names due to subscripting surv3 <- survfit(fit, c(age=40, sex=2, meal.cal=1000)) keep <- which(!(names(surv3) %in% c("newdata", "call"))) all.equal(unclass(surv2[,2])[keep], unclass(surv3)[keep]) # Test out offsets, which have recently become popular due to a Langholz paper fit1 <- coxph(Surv(time, status) ~ age + ph.ecog, lung) fit2 <- coxph(Surv(time, status) ~ age + offset(ph.ecog * fit1$coefficients[2]), lung) surv1 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1)) surv2 <- survfit(fit2, newdata=data.frame(age=50, ph.ecog=1)) all.equal(surv1$surv, surv2$surv) # And a model with only offsets. eta <- cbind(lung$age, lung$ph.ecog) %*% coef(fit1) fit3 <- coxph(Surv(time, status) ~ offset(eta), lung) aeq(fit3$loglik, fit1$loglik[2]) surv3 <- survfit(fit3, newdata=data.frame(eta= 50*fit1$coefficients[1] + fit1$coefficients[2])) all.equal(surv3$surv, surv1$surv) # # Check out the start.time option # surv3 <- survfit(fit1, newdata=data.frame(age=50, ph.ecog=1), start.time=100) index <- match(surv3$time, surv1$time) rescale <- summary(surv1, times=100)$surv all.equal(surv3$surv, surv1$surv[index]/rescale)