options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # These results can be found in Miller # fit <- coxph(Surv(aml$time, aml$status) ~ aml$x, method='breslow') fit resid(fit, type='mart') resid(fit, type='score') resid(fit, type='scho') # Test the drop of an itercept: should have no effect fit2 <- coxph(Surv(time, status) ~ x -1, method='breslow', data=aml) aeq(fit$loglik, fit2$loglik) aeq(coef(fit), coef(fit2)) aeq(fit$var, fit2$var) fit <- survfit(Surv(aml$time, aml$status) ~ aml$x) fit summary(fit) survdiff(Surv(aml$time, aml$status)~ aml$x) # # Test out the weighted K-M # # First, equal case weights- shouldn't change the survival, but will # halve the variance temp2 <-survfit(Surv(aml$time, aml$status)~1, weights=rep(2,23)) temp <-survfit(Surv(time, status)~1, aml) aeq(temp$surv, temp2$surv) aeq(temp$std.err^2, 2*temp2$std.err^2) # Risk weights-- use a null Cox model tfit <- coxph(Surv(aml$time, aml$status) ~ offset(log(1:23))) sfit <- survfit(tfit, stype=2, ctype=1, censor=FALSE) # Now compute it by hand. The survfit program will produce a curve # corresponding to the mean offset. # Ties are a nuisance, the line above forced the Nelson rather than Efron # to make it easier rscore <- exp(log(1:23) - mean(log(1:23)))[order(aml$time)] atime <- sort(aml$time) denom <- rev(cumsum(rev(rscore))) denom <- denom[match(unique(atime), atime)] deaths <- tapply(aml$status, aml$time, sum) chaz <- cumsum(deaths/denom) all.equal(sfit$surv, as.vector(exp(-chaz[deaths>0]))) # And the Efron result summary(survfit(tfit)) # Lots of ties, so its a good test case x1 <- coxph(Surv(time, status)~x, aml, method='efron') x1 x2 <- coxph(Surv(rep(0,23),time, status) ~x, aml, method='efron') aeq(x1$coef, x2$coef)