library(survival) # # Check that the survival curves from a Cox model with beta=0 # match ordinary survival # # Aalen surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2) fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, ties='breslow') fit1$var <- 0*fit1$var #sneaky, causes the extra term in the Cox variance # calculation to be zero surv2 <- survfit(fit1, stype=2) surv3 <- survfit(fit1) arglist <- c('n', 'time', 'n.risk','n.event', 'n.censor', 'surv', 'strata', 'std.err', 'upper', 'lower') all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2) surv2 <- survfit(fit1, ctype=2) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung) surv2 <- survfit(fit1, stype=1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Now add some random weights rwt <- runif(nrow(lung), .5, 3) surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, weights=rwt, robust=FALSE) fit1 <- coxph(Surv(time, status) ~ age + strata(sex), data=lung, iter=0, ties='breslow', weights=rwt, robust=FALSE) fit1$var <- 0*fit1$var #sneaky surv2 <- survfit(fit1, stype=2, ctype=1) surv3 <- survfit(fit1) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) all.equal(unclass(surv1)[arglist], unclass(surv3)[arglist]) # Efron method surv1 <- survfit(Surv(time,status) ~ sex, data=lung, stype=2, ctype=2, weights=rwt, robust=FALSE) surv2 <- survfit(fit1, ctype=2, robust=FALSE) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist]) # Kaplan-Meier surv1 <- survfit(Surv(time,status) ~ sex, data=lung, weights=rwt, robust=FALSE) surv2 <- survfit(fit1, stype=1, robust=FALSE) all.equal(unclass(surv1)[arglist], unclass(surv2)[arglist])