library(survival) options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type # Tests of the weighted Cox model # This is section 1.3 of my appendix -- no yet found in any of the # printings though, it awaits the next edition # # Efron approximation # aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) testw1 <- data.frame(time= c(1,1,2,2,2,2,3,4,5), status= c(1,0,1,1,1,0,0,1,0), x= c(2,0,1,1,0,1,0,1,0), wt = c(1,2,3,4,3,2,1,2,1)) xx <- testw1$wt # Efron estimate byhand <- function(beta, newx=0) { r <- exp(beta) a <- 7*r +3; b<- 4*r+2 loglik <- 11*beta - (log(r^2 + 11*r +7) + 10*log(11*r +5)/3 + 10*log(a*2/3 +b)/3 + 10*log(a/3 +b)/3 +2*log(2*r+1)) hazard <- c(1/(r^2 + 11*r +7), 10/(3*c(11*r +5, a*2/3 +b, a/3+b)), 2/(2*r+1)) temp <- c(hazard[1], hazard[1]+hazard[2] + hazard[3]*2/3 + hazard[4]/3, cumsum(hazard)[4:5]) risk <- c(r^2, 1,r,r,1,r,1,r,1) expected <- risk* temp[c(1,1,2,2,2,3,3,4,4)] # The matrix of weights, one row per obs, one col per death # deaths at 1,2,2,2, and 4 riskmat <- matrix(c(1,1,1,1,1,1,1,1,1, 0,0,1,1,1,1,1,1,1, 0,0,2/3,2/3,2/3,1,1,1,1, 0,0,1/3,1/3,1/3,1,1,1,1, 0,0,0,0,0,0,0,1,1), ncol=5) wtmat <- diag(c(r^2, 2, 3*r, 4*r, 3, 2*r, 1, 2*r, 1)) %*% riskmat x <- c(2,0,1,1,0,1,0,1,0) xbar <- colSums(x*wtmat)/ colSums(wtmat) imat <- (4*r^2 + 11*r)*hazard[1] - xbar[1]^2 + 10* mean(xbar[2:4] - xbar[2:4]^2) + 2*(xbar[5] - xbar[5]^2) status <- c(1,0,1,1,1,0,0,1,0) wt <- c(1,2,3,4,3,2,1,2,1) # Table of sums for score resids hazmat <- riskmat %*% diag(c(1,10/3,10/3, 10/3,2)/colSums(wtmat)) dM <- -risk*hazmat #Expected part dM[1,1] <- dM[1,1] +1 # deaths at time 1 for (i in 2:4) dM[3:5, i] <- dM[3:5,i] + 1/3 dM[8,5] <- dM[8,5] +1 mart <- rowSums(dM) resid <-dM * outer(x, xbar ,'-') # Increments to the variance of the hazard var.g <- cumsum(hazard^2* c(1,3/10, 3/10, 3/10, 1/2)) var.d <- cumsum((xbar-newx)*hazard) sxbar <- c(xbar[1], mean(xbar[2:4]), xbar[5]) #xbar for Schoen list(loglik=loglik, imat=imat, hazard=hazard, xbar=xbar, mart=status-expected, expected=expected, score=rowSums(resid), schoen=c(2,1,1,0,1) - sxbar[c(1,2,2,2,3)], varhaz=((var.g + var.d^2/imat)* exp(2*beta*newx))[c(1,4,5)]) } # Verify temp <- byhand(0,0) aeq(temp$xbar, c(13/19, 11/16, 26/38, 19/28, 2/3)) aeq(temp$hazard, c(1/19, 5/24, 5/19, 5/14, 2/3)) fit0 <- coxph(Surv(time, status) ~x, testw1, weights=wt, iter=0) fit <- coxph(Surv(time, status) ~x, testw1, weights=wt) truth0 <- byhand(0,pi) aeq(fit0$loglik[1], truth0$loglik) aeq(1/truth0$imat, fit0$var) aeq(truth0$mart, fit0$residuals) aeq(truth0$schoen, resid(fit0, 'schoen')) aeq(truth0$score, resid(fit0, 'score')) sfit <- survfit(fit0, list(x=pi), censor=FALSE) aeq(sfit$std.err^2, truth0$varhaz) aeq(-log(sfit$surv), cumsum(truth0$hazard)[c(1,4,5)]) truth <- byhand(fit$coefficients, .3) aeq(truth$loglik, fit$loglik[2]) aeq(1/truth$imat, fit$var) aeq(truth$mart, fit$residuals) aeq(truth$schoen, resid(fit, 'schoen')) aeq(truth$score, resid(fit, 'score')) sfit <- survfit(fit, list(x=.3), censor=FALSE) aeq(sfit$std.err^2, truth$varhaz) aeq(-log(sfit$surv), (cumsum(truth$hazard)* exp(fit$coefficients*.3))[c(1,4,5)]) fit0 summary(fit) resid(fit0, type='score') resid(fit0, type='scho') resid(fit, type='score') resid(fit, type='scho') rr1 <- resid(fit, type='mart') rr2 <- resid(fit, type='mart', weighted=T) aeq(rr2/rr1, testw1$wt) rr1 <- resid(fit, type='score') rr2 <- resid(fit, type='score', weighted=T) aeq(rr2/rr1, testw1$wt)