options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly'), show.signif.stars=FALSE) #ensure constrast type library(survival) # # Fit the models found in Wei et. al. # wfit <- coxph(Surv(stop, event) ~ (rx + size + number)* strata(enum), cluster=id, bladder, ties='breslow') wfit # Check the rx coefs versus Wei, et al, JASA 1989 rx <- c(1,4,5,6) # the treatment coefs above cmat <- diag(4); cmat[1,] <- 1; #contrast matrix wfit$coefficients[rx] %*% cmat # the coefs in their paper (table 5) t(cmat) %*% wfit$var[rx,rx] %*% cmat # var matrix (eqn 3.2) # Anderson-Gill fit fita <- coxph(Surv(start, stop, event) ~ rx + size + number, cluster=id, bladder2, ties='breslow') summary(fita) # Prentice fits. Their model 1 a and b are the same fit1p <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==1), ties='breslow') fit2pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==2), ties='breslow') fit2pb <- coxph(Surv(stop-start, event) ~ rx + size + number, bladder2, subset=(enum==2), ties='breslow') fit3pa <- coxph(Surv(stop, event) ~ rx + size + number, bladder2, subset=(enum==3), ties='breslow') #and etc. fit1p fit2pa fit2pb fit3pa rm(rx, cmat, wfit, fita, fit1p, fit2pa, fit2pb, fit3pa)