options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test aareg, for some simple data where the answers can be computed # in closed form # aeq <- function(x,y, ...) all.equal(as.vector(x), as.vector(y), ...) test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0), wt= c(1, 1:6)) tfit <- aareg(Surv(time, status) ~ x, test1) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(6,4,4)) aeq(tfit$coefficient, matrix(c(0,0,1/3, 1/3, 1, -1/3), ncol=2)) aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) tfit <- aareg(Surv(time, status) ~ x, test1, test='nrisk') aeq(tfit$tweight, matrix(c(3,3,3, 3/2, 3/4, 3/4), ncol=2)) #should be as before aeq(tfit$test.statistic, c(4/3, 6/3+ 4 - 4/3)) aeq(tfit$test.var, c(16/9, -16/9, -16/9, 36/9 + 16 + 16/9)) # In the 1-variable case, this is the same as the default Aalen weight tfit <- aareg(Surv(time, status) ~ x, test1, test='variance') aeq(tfit$test.statistic, c(1,1)) aeq(tfit$test.var, c(1, -1/4, -1/4, 1/4 + 9/16 + 1/16)) # # Repeat the above, with case weights # tfit <- aareg(Surv(time, status) ~x, test1, weights=wt) aeq(tfit$times, c(1,2,2)) aeq(tfit$nrisk, c(21,16,16)) aeq(tfit$coefficient, matrix(c(0,0,5/12, 2/9, 1, -5/12), ncol=2)) aeq(tfit$tweight, matrix(c(12,12,12, 36/7, 3,3), ncol=2)) aeq(tfit$test.statistic, c(5, 72/63 + 3 - 15/12)) aeq(tfit$test.var, c(25, -25/4, -25/4, (72/63)^2 + 9 + (5/4)^2)) tfit <- aareg(Surv(time, status) ~x, test1, weights=wt, test='nrisk') aeq(tfit$test.statistic, c(20/3, 42/9 + 16 - 16*5/12)) aeq(tfit$test.var, c(400/9, -400/9, -400/9, (42/9)^2 + 16^2 + (16*5/12)^2)) # # Make a test data set with no NAs, in sorted order, no ties, # 15 observations tdata <- lung[15:29, c('time', 'status', 'age', 'sex', 'ph.ecog')] tdata$status <- tdata$status -1 tdata <- tdata[order(tdata$time, tdata$status),] row.names(tdata) <- 1:15 tdata$status[8] <- 0 #for some variety afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, tdata, nmin=6) # # Now, do it "by hand" cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, tdata, iter=0, method='breslow') dt1 <- coxph.detail(cfit) sch1 <- resid(cfit, type='schoen') # First estimate of Aalen: from the Cox computations, first 9 # The first and last cols of the ninth are somewhat unstable (approx =0) mine <- rbind(solve(dt1$imat[,,1], sch1[1,]), solve(dt1$imat[,,2], sch1[2,]), solve(dt1$imat[,,3], sch1[3,]), solve(dt1$imat[,,4], sch1[4,]), solve(dt1$imat[,,5], sch1[5,]), solve(dt1$imat[,,6], sch1[6,]), solve(dt1$imat[,,7], sch1[7,]), solve(dt1$imat[,,8], sch1[8,]), solve(dt1$imat[,,9], sch1[9,])) mine <- diag(1/dt1$nrisk[1:9]) %*% mine aeq(mine, afit$coefficient[1:9, -1]) # # Check out the dfbeta matrix from aareg # Note that it is kept internally in time order, not data set order # Those who want residuals should use the resid function! # # First, the simple test case where I know the anwers # afit <- aareg(Surv(time, status) ~ x, test1, dfbeta=T) temp <- c(rep(0,6), #intercepts at time 1 c(2,-1,-1,0,0,0)/9, #alpha at time 1 c(0,0,0,2, -1, -1)/9, #intercepts at time 2 c(0,0,0,-2,1,1)/9) #alpha at time 2 aeq(afit$dfbeta, temp) # #Now a multivariate data set # afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T) ord <- order(lung$time, -lung$status) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T) cdt <- coxph.detail(cfit, riskmat=T) # an arbitrary list of times acoef <- rowsum(afit$coefficient, afit$times) #per death time coefs indx <- match(cdt$time, afit$times) for (i in c(2,5,27,54,101, 135)) { lwho <- (cdt$riskmat[,i]==1) lmx <- cfit$x[lwho,] lmy <- 1*( cfit$y[lwho,2]==1 & cfit$y[lwho,1] == cdt$time[i]) fit <- lm(lmy~ lmx) cat("i=", i, "coef=", aeq(fit$coefficients, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,lmx) zzinv <- solve(t(zz) %*% zz) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% rr) cat(" dfbeta=", aeq(df, afit$dfbeta[lwho,,i]), "\n") } # Repeat it with case weights ww <- rep(1:5, length.out=nrow(lung))/ 3.0 afit <- aareg(Surv(time, status) ~ age + sex + ph.ecog, lung, dfbeta=T, weights=ww) cfit <- coxph(Surv(time, status) ~ age + sex + ph.ecog, lung[ord,], method='breslow', iter=0, x=T, weights=ww[ord]) cdt <- coxph.detail(cfit, riskmat=T) acoef <- rowsum(afit$coefficient, afit$times) #per death time coefs for (i in c(2,5,27,54,101, 135)) { who <- (cdt$riskmat[,i]==1) x <- cfit$x[who,] y <- 1*( cfit$y[who,2]==1 & cfit$y[who,1] == cdt$time[i]) w <- cfit$weights[who] fit <- lm(y~x, weights=w) cat("i=", i, "coef=", aeq(fit$coefficients, acoef[i,])) rr <- diag(resid(fit)) zz <- cbind(1,x) zzinv <- solve(t(zz)%*% (w*zz)) cat(" twt=", aeq(1/(diag(zzinv)), afit$tweight[indx[i],])) df <- t(zzinv %*% t(zz) %*% (w*rr)) cat(" dfbeta=", aeq(df, afit$dfbeta[who,,i]), "\n") } # # Check that the test statistic computed within aareg and # the one recomputed within summary.aareg are the same. # Of course, they could both be wrong, but at least they'll agree! # If the maxtime argument is used in summary, it recomputes the test, # even if we know that it wouldn't have had to. # # Because the 1-variable and >1 variable case have different code, test # them both. # afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.statistic, asum$test.statistic) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.statistic, asum$test.statistic) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # # Mulitvariate # afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T) asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.statistic, asum$test.statistic) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) print(afit) afit <- aareg(Surv(time, status) ~ age + sex + ph.karno + pat.karno, lung, dfbeta=T, test='nrisk') asum <- summary(afit, maxtime=max(afit$times)) aeq(afit$test.statistic, asum$test.statistic) aeq(afit$test.var, asum$test.var) aeq(afit$test.var2, asum$test.var2) summary(afit) # Weights play no role in the final computation of the test statistic, given # the coefficient matrix, nrisk, and dfbeta as inputs. (Weights do # change the inputs). So there is no need to reprise the above with # case weights.