library(survival) # start with the example used in chapter 2 of the book bdata <- data.frame(time = c(1, 2, 2, 3, 4, 4, 5, 5, 8, 8, 9, 10,11, 12,14, 15, 16, 16, 18, 20), status = c(1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0)) # First check: verify that the the RTTR reproduces the KM kfit <- survfit(Surv(time, status) ~1, bdata) bwt <- rttright(Surv(time, status) ~1, bdata, renorm= FALSE) cdf <- cumsum(bwt)/nrow(bdata) # weighted CDF cdf <- cdf[!duplicated(bdata$time, fromLast=TRUE)] # remove duplicates all.equal(kfit$surv, 1-cdf) # A covariate divides both survfit and rttr into disjoint groups, so repeat # the above check on subsets of the aml data afit <- survfit(Surv(time, status) ~x, aml) awt <- rttright(Surv(time, status) ~x, aml, renorm=TRUE) igroup <- as.numeric(aml$x) for (i in 1:2) { atemp <- awt[igroup ==i] # subset for this curve index <- order(aml$time[igroup ==i]) acdf <- cumsum(atemp[index]) acdf <- acdf[!duplicated(aml$time[igroup ==i], fromLast=TRUE)] print(all.equal(afit[i]$surv, 1-acdf)) } ########### # Alternate computation using inverse prob of censoring weights. # First shift the censorings to avoid ties: if there is a death and a censor # at time 10, say, the death was not at risk of censoring. Censoring weights # happen "later". This also results in a left-continuous curve. delta <- min(diff(sort(unique(bdata$time)))) /3 offset <- ifelse(bdata$status==1, 0, delta) cfit <- survfit(Surv(time+ offset, 1-status) ~ 1, bdata) # interpolate indx <- findInterval(bdata$time, cfit$time) cwt <- ifelse(bdata$status==0, 0, 1/cfit$surv[indx]) all.equal(bwt, cwt) # Multiple time points, this example is used in the vignette tdata <- data.frame(time= c(1,2,2,3,4,4,5,5,8,9), status= c(1,1,0,1,0,0,1,0,1,1)) fit1 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=FALSE) fit2 <- rttright(Surv(time, status) ~ 1, tdata, times=2:6, renorm=TRUE) all.equal(fit1, 10*fit2) all.equal(fit1, cbind(7, c(7,7,0,8,8,8,8,8,8,8), c(7,7,0,8,8,8,8,8,8,8), c(7,7,0,8,0,0,12,12,12,12), c(7,7,0,8,0,0,12, 0, 18,18))/7, check.attributes=FALSE) # Now test with (start, stop] data, should get the same results b2 <- survSplit(Surv(time, status) ~ 1, bdata, cut= c(3,5, 7, 14), id = "subject") indx <- c(seq(1, 65, by=2), seq(64, 2, by= -2)) b2 <- b2[indx,] # not in time within subject order (stronger test) b2wt <- rttright(Surv(tstart, time, status) ~1, b2, id=subject) indx2 <- order(b2$time) cdf2 <- cumsum(b2wt[indx2]) cdf2 <- cdf2[!duplicated(b2$time[indx2], fromLast=TRUE)] # remove duplicates utime2 <- sort(unique(b2$time)) # will have an extra time 7 utime1 <- sort(unique(bdata$time)) all.equal(cdf2[match(utime1, utime2)], cdf) # Competing risks mdata <- mgus2 mdata$etime <- with(mgus2, ifelse(pstat==1, ptime, futime)) mdata$estat <- with(mgus2, ifelse(pstat==1, 1, 2*death)) mdata$estat <- factor(mdata$estat, 0:2, c('censor', 'pcm', 'death')) mfit <- survfit(Surv(etime, estat) ~1, mdata, id=id, time0=FALSE) mwt1 <- rttright(Surv(etime, estat) ~1, mdata, id=id) morder <- order(mdata$etime) mdata2 <- mdata[morder,] mwt2 <- rttright(Surv(etime,estat) ~1, mdata2, id=id) all.equal(mwt1[morder], mwt2) keep <- !duplicated(mdata2$etime, fromLast=TRUE) csum1 <- cumsum(ifelse(mdata2$estat=="pcm", mwt2, 0)) csum2 <- cumsum(ifelse(mdata2$estat=="death", mwt2, 0)) all.equal(mfit$pstate[,2], csum1[keep]) all.equal(mfit$pstate[,3], csum2[keep]) # Case weights, at multiple times bwt <- rep(1:2, length=nrow(bdata)) tm <- c(2, 6, 10, 15, 18) fit1 <- rttright(Surv(time, status) ~1, bdata, weights=bwt, times= tm) casefit <- survfit(Surv(time, status) ~ 1, bdata, weights= bwt) csum1 <- summary(casefit, censor=FALSE, times= tm) for (i in 1:length(tm)) { c1 <- sum(fit1[bdata$status==1 & bdata$time <= tm[i], i]) print(all.equal(c1, 1-csum1$surv[i])) }