library(survival) aeq <- function(x, y, ...) all.equal(as.vector(x), as.vector(y), ...) # test for the "extended KM", where subjects change arms midstream # (I don't like it statistically, but some use it). tdata <- aml tdata$id <- 1:nrow(tdata) tdata <- survSplit(Surv(time, status) ~ ., tdata, cut= c(9, 17, 30)) tdata$trt <- rep(c(1,1,2,2,2), length=nrow(tdata)) # different weights for different rows of the same subject = hardest case tdata$wt <- rep(1:6, length= nrow(tdata)) tdata$status[tdata$time==13] <- 1 # force at least 1 tied event # not exported, but used in byhand if (!exists("survflag")) survflag <- survival:::survflag byhand <- function(t1, t2, status, grp, id, wt, debug=FALSE) { if (missing(wt)) wt <- rep(1, length(t1)) ugrp <- unique(grp) ngrp <- length(ugrp) out <- vector("list", ngrp) names(out) <- ugrp pos <- survflag(Surv(t1, t2, status), id, grp) for (i in ugrp) { # create this curve keep <- (grp ==i) n <- sum(keep) utime <- sort(unique(c(t1[keep], t2[keep]))) ntime <- length(utime) nrisk <- ncensor <- nevent <- entry <- double(ntime) surv <- cumhaz <- double(ntime) U <- C <- matrix(0, n, ntime) # influence U2 <- dN <- U # portions of U, useful for debugging the AUC utemp <- ctemp <- double(n) km <- 1.0; chaz <- 0 for (j in 1:ntime) { atrisk <- (keep & t1 < utime[j] & t2 >= utime[j]) nrisk[j] <- sum(wt[atrisk]) nevent[j] <- sum(wt[keep & t2== utime[j] & status ==1]) ncensor[j] <- sum(wt[keep & t2==utime[j] & status==0 & pos >1]) entry[j] <- sum(wt[keep & t1== utime[j] & pos%%2 ==1]) if (nrisk[j] >0) { km <- km * (nrisk[j]- nevent[j])/ nrisk[j] chaz <- chaz + nevent[j]/nrisk[j] } surv[j] =km cumhaz[j] =chaz # influence if (nrisk[j] > 0) { haz <- nevent[j]/nrisk[j] death <- (t2[keep]== utime[j] & status[keep] ==1) temp <- double(n) temp[death] <- 1/nrisk[j] temp[atrisk[keep]] <- temp[atrisk[keep]] - haz/nrisk[j] ctemp <- ctemp + temp if (haz <1) utemp <- utemp - temp/(1-haz) else utemp <- 0 dN[death,j] <- 1/(nrisk[j]* (1-haz)) U2[atrisk[keep],j] <- haz/(nrisk[j] * (1-haz)) } U[,j] <- utemp*km C[,j] <- ctemp } out[[i]] <- list(n.id = length(unique(id[keep])), n= n, time= utime, n.enter=entry, n.risk=nrisk, n.event=nevent, n.censor= ncensor, surv= surv, cumhaz = cumhaz, U=U, C=C, U2=U2, dN=dN) } out } true <- with(tdata, byhand(tstart, time, status, trt, id, wt)) ekm <- survfit(Surv(tstart, time, status) ~ trt, tdata, id=id, entry=TRUE, influence= TRUE, weights=wt) aeq(ekm$n.id, unlist(lapply(true, function(x) x$n.id))) aeq(ekm$n, unlist(lapply(true, function(x) x$n))) aeq(ekm$time, unlist(lapply(true, function(x) x$time))) aeq(ekm$n.risk, unlist(lapply(true, function(x) x$n.risk))) aeq(ekm$n.enter, unlist(lapply(true, function(x) x$n.enter))) aeq(ekm$n.event, unlist(lapply(true, function(x) x$n.event))) aeq(ekm$n.censor,unlist(lapply(true, function(x) x$n.censor))) aeq(ekm$surv ,unlist(lapply(true, function(x) x$surv))) # The byhand function gives per-observation influence, ekm has per-subject, # residuals can do either, but will fail with an error for this data when # collapse=TRUE with a message "same id appears in multiple curves " rr <- residuals(ekm, times= c(9, 17, 30, 45), type="cumhaz") aeq(rr[tdata$trt==1,], true[[1]]$C[, match(c(9,17,30,45), true[[1]]$time)]) aeq(rr[tdata$trt==2,], true[[2]]$C[, match(c(9,17,30,45), true[[2]]$time)]) rr <- residuals(ekm, times= c(9, 17, 30, 45), type= "pstate") aeq(rr[tdata$trt==1,], true[[1]]$U[, match(c(9,17,30,45), true[[1]]$time)]) aeq(rr[tdata$trt==2,], true[[2]]$U[, match(c(9,17,30,45), true[[2]]$time)]) # Check influence returned by survfit tdata1 <- subset(tdata, trt==1) tdata2 <- subset(tdata, trt==2) inf1 <- rowsum(tdata1$wt* true[[1]]$U, tdata1$id, reorder=FALSE) inf2 <- rowsum(tdata2$wt* true[[2]]$U, tdata2$id, reorder=FALSE) aeq(inf1, ekm$influence.surv[[1]]) aeq(inf2, ekm$influence.surv[[2]]) c1 <- rowsum(tdata1$wt* true[[1]]$C, tdata$id[tdata$trt==1], reorder=FALSE) c2 <- rowsum(tdata2$wt* true[[2]]$C, tdata$id[tdata$trt==2], reorder=FALSE) aeq(c1, ekm$influence.chaz[[1]]) aeq(c2, ekm$influence.chaz[[2]]) # Look at the AUC t1 <- true[[1]] width <- diff(c(t1$time, 50)) aucr <- width* t1$surv # the rectangles that make up auc(50) ainf <- t1$U %*% diag(width) # row i= influence of obs i on each rectangle aucinf <- t(apply(ainf,1,cumsum)) rr <- residuals(ekm, times= c(t1$time[-1], 50), type= "auc") aeq(rr[tdata$trt==1,], aucinf) # use factor(status) to force the multi-state code ekm2 <- survfit(Surv(tstart, time, factor(status)) ~ trt, tdata, id=id, entry=TRUE, influence= TRUE, weights=wt) aeq(ekm$n, ekm2$n) aeq(ekm$time, ekm2$time) aeq(ekm$n.risk, ekm2$n.risk[,1]) aeq(ekm$n.event, ekm2$n.event[,2]) aeq(ekm$n.censor, ekm2$n.censor[,1]) aeq(ekm$n.enter, ekm2$n.enter[,1]) aeq(ekm$surv, ekm2$pstate[,1]) aeq(ekm$std.err, ekm2$std.err[,1]) aeq(ekm$cumhaz, ekm2$cumhaz[,1]) aeq(ekm$std.chaz, ekm2$std.chaz[,1]) aeq(ekm$strata, ekm2$strata) aeq(ekm$n.id, ekm2$n.id) aeq(ekm$counts, ekm2$counts[,c("nrisk:1", "ntrans:1.2", "ncensor:1", "nenter:1")]) aeq(ekm$influence.surv[[1]], ekm2$influence.pstate[[1]][,,1]) aeq(ekm$influence.surv[[2]], ekm2$influence.pstate[[2]][,,1])