options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # # Test some more features of surv.diff # # First, what happens when one group is a dummy # # # The AML data, with a third group of early censorings "tacked on" # aml3 <- list(time= c( 9, 13, 13, 18, 23, 28, 31, 34, 45, 48, 161, 5, 5, 8, 8, 12, 16, 23, 27, 30, 33, 43, 45, 1, 2, 2, 3, 3, 3, 4), status= c( 1,1,0,1,1,0,1,1,0,1,0, 1,1,1,1,1,0,1,1,1,1,1,1, 0,0,0,0,0,0,0), x = as.factor(c(rep("Maintained", 11), rep("Nonmaintained", 12), rep("Dummy",7) ))) aml3 <- data.frame(aml3) # These should give the same result (chisq, df), but the second has an # extra group survdiff(Surv(time, status) ~x, aml) survdiff(Surv(time, status) ~x, aml3) # # Now a test of the stratified log-rank # There are no tied times within institution, so the coxph program # can be used to give a complete test # fit <- survdiff(Surv(time, status) ~ pat.karno + strata(inst), lung) cfit <- coxph(Surv(time, status) ~ factor(pat.karno) + strata(inst), lung, iter=0) tdata <- na.omit(lung[,c('time', 'status', 'pat.karno', 'inst')]) temp1 <- tapply(tdata$status-1, list(tdata$pat.karno, tdata$inst), sum) temp1 <- ifelse(is.na(temp1), 0, temp1) temp2 <- tapply(cfit$resid, list(tdata$pat.karno, tdata$inst), sum) temp2 <- ifelse(is.na(temp2), 0, temp2) temp2 <- temp1 - temp2 #Now temp1=observed, temp2=expected all.equal(c(temp1), c(fit$obs)) all.equal(c(temp2), c(fit$exp)) all.equal(fit$var[-1,-1], solve(cfit$var)) rm(tdata, temp1, temp2)