R version 4.4.0 RC (2024-04-16 r86457 ucrt) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) > # One more test on coxph survival curves, to test out the individual > # option. First fit a model with a time dependent covariate > # > test2 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0) ) > > # True hazard function, from the validation document > lambda <- function(beta, x=0, method='efron') { + r <- exp(beta) + lambda <- c(1/(r+1), 1/(r+2), 1/(3*r +2), 1/(3*r+1), + 1/(3*r+1), 1/(3*r+2) + 1/(2*r +2)) + if (method == 'breslow') lambda[9] <- 2/(3*r +2) + list(time=c(2,3,6,7,8,9), lambda=lambda) + } > > fit <- coxph(Surv(start, stop, event) ~x, test2) > # A curve for someone who never changes > surv1 <-survfit(fit, newdata=list(x=0), censor=FALSE) > > true <- lambda(fit$coef, 0) > > aeq(true$time, surv1$time) [1] TRUE > aeq(-log(surv1$surv), cumsum(true$lambda)) [1] TRUE > > # Reprise it with a time dependent subject who doesn't change > data2 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0), patn=c(1,1,1,1)) > surv2 <- survfit(fit, newdata=data2, id=patn, censor=FALSE) > aeq(surv2$surv, surv1$surv) [1] TRUE > > > # > # Now a more complex data set with multiple strata > # > test3 <- data.frame(start=c(1, 2, 5, 2, 1, 7, 3, 4, 8, 8, + 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), + stop =c(2, 3, 6, 7, 8, 9, 9, 9,14,17, + 1:11), + event=c(1, 1, 1, 1, 1, 1, 1, 0, 0, 0, + 0, 1, 1, 0, 0, 1, 1, 0, 1, 0,1), + x =c(1, 0, 0, 1, 0, 1, 1, 1, 0, 0, + 1, 2, 3, 2, 1, 1, 1, 0, 2, 1,0), + grp = c(rep('a', 10), rep('b', 11))) > > fit2 <- coxph(Surv(start, stop, event) ~ x + strata(grp), test3) > > # The above tests show the program works for a simple case, use it to > # get a true baseline for strata 2 > fit2b <- coxph(Surv(start, stop, event) ~x, test3, + subset=(grp=='b'), init=fit2$coef, iter=0) > temp <- survfit(fit2b, newdata=list(x=0), censor=F) > true2 <- list(time=temp$time, lambda=diff(c(0, -log(temp$surv)))) > true1 <- lambda(fit2$coef, x=0) > > # Separate strata, one value > surv3 <- survfit(fit2, list(x=0), censor=FALSE) > aeq(true1$time, (surv3[1])$time) [1] TRUE > aeq(-log(surv3[1]$surv), cumsum(true1$lambda)) [1] TRUE > > data4 <- data.frame(start=c(0, 4, 9, 11), stop=c(4, 9, 11, 17), + event=c(0,0,0,0), x=c(0,0,0,0), grp=rep('a', 4), + patid= rep("Jones", 4)) > surv4a <- survfit(fit2, newdata=data4, id=patid, censor=FALSE) > aeq(-log(surv4a$surv), cumsum(true1$lambda)) [1] TRUE > > data4$grp <- rep('b',4) > surv4b <- survfit(fit2, newdata=data4, id=patid, censor=FALSE) > aeq(-log(surv4b$surv), cumsum(true2$lambda)) [1] TRUE > > > # Now for something more complex > # Subject 1 skips day 4. Since there were no events that day the survival > # will be the same, but the times will be different. > # Subject 2 spends some time in strata 1, some in strata 2, with > # moving covariates > # > data5 <- data.frame(start=c(0,5,9,11, + 0, 4, 3), + stop =c(4,9,11,17, 4,8,7), + event=rep(0,7), + x=c(1,1,1,1, 0,1,2), + grp=c('a', 'a', 'a', 'a', 'a', 'a', 'b'), + subject=c(1,1,1,1, 2,2,2)) > surv5 <- survfit(fit2, newdata=data5, censor=FALSE, id=subject) > > aeq(surv5[1]$time, c(2,3,5,6,7,8)) #surv1 has 2, 3, 6, 7, 8, 9 [1] TRUE > aeq(surv5[1]$surv, surv3[1]$surv ^ exp(fit2$coef)) [1] TRUE > > tlam <- c(true1$lambda[1:2]* exp(fit2$coef * data5$x[5]), + true1$lambda[3:5]* exp(fit2$coef * data5$x[6]), + true2$lambda[3:4]* exp(fit2$coef * data5$x[7])) > aeq(-log(surv5[2]$surv), cumsum(tlam)) [1] TRUE > > > > > proc.time() user system elapsed 1.31 0.17 1.42