R version 4.4.0 beta (2024-04-15 r86425 ucrt) -- "Puppy Cup" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > options(na.action=na.exclude) # preserve missings > options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type > library(survival) > mdy.date <- function(m, d, y) { + y <- ifelse(y<100, y+1900, y) + as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") + } > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # Thus this breakdown does not match that in doexpect.s > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), + temp.yr = 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr, + rmap=list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > > py3 <- pyears(temp.time ~ temp.age + temp.yr, + rmap=list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Simple case: a single male subject, born 6/6/36 and entered on study 6/6/55. > # > > temp1 <- mdy.date(6,6,36) > temp2 <- mdy.date(6,6,55)# Now compare the results from person-years > # > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:31 * 365.24))), + labels=c('0-18', paste(18:30, 19:31, sep='-'))) > temp.yr <- tcut(temp2, mdy.date(1,1,1954:1965), labels=1954:1964) > temp.time <- 3700 #total days of fu > py1 <- pyears(temp.time ~ temp.age + temp.yr, scale=1) #output in days > > # The subject should appear in 20 cells > # 6/6/55 - 12/31/55, 209 days, age 19-20, 1955 > # 1/1/56 - 6/ 4/56, 156 days, age 19-20, 1956 > # 6/5/56 - 12/31/56, 210 days, age 20-21, 1956 (a leap year, and his > # birthday computes one day earlier) > # 1/1/57 - 6/ 5/57, 156 days, age 20-21, 1957 > # 6/6/57 - 12/31/57, 209 days, age 21-22, 1957 > # and etc > # with 203 days "off table", ie, beyond the last cell of the table > # > # It is a nuisance, but tcut follows 'cut' in that we give the ENDS of > # the intervals, whereas the survival tables use the starts of intervals. > # > xx <- matrix(0, nrow=14, ncol=11) > xx[cbind(3:11, 3:11)] <- 156 > xx[cbind(3:12, 2:11)] <- c(209, 210, rep(c(209, 209, 209, 210),2)) > dimnames(xx) <- list(temp.age= c('0-18', paste(18:30, 19:31, sep='-')), + temp.yr = 1954:1964) > all.equal(xx, py1$pyears) [1] TRUE > all.equal(203, py1$offtable) [1] TRUE > all.equal(1*(xx>0), py1$n) [1] TRUE > > # > # Now with expecteds > # > py2 <- pyears(temp.time ~ temp.age + temp.yr, + rmap= list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us ) #output in days > all.equal(xx, py2$pyears) [1] TRUE > all.equal(203, py2$offtable) [1] TRUE > all.equal(1*(xx>0), py2$n) [1] TRUE > > > py3 <- pyears(temp.time ~ temp.age + temp.yr, + rmap= list(age=temp2-temp1, year=temp2, sex=1), + scale=1, ratetable=survexp.us , expect='pyears') > all.equal(py2$n, py3$n) [1] TRUE > all.equal(py2$pyear, py3$pyear) [1] TRUE > all.equal(py3$n, 1*(py3$expect>0)) [1] TRUE > > # Now, compute the py3 result "by hand". Since there is only one person > # it can be derived from py2. > # > xx1 <- py2$expect[py2$n>0] # the hazard over each interval > cumhaz <- cumsum(c(0, xx1[-length(xx1)])) # the cumulative hazard > xx2 <- py3$expect[py3$n>0] # the expected number of person days > xx3 <- py3$pyears[py3$n>0] # the potential number of person days > > # This is the integral of the curve "exp(-haz *t)" over the interval > integral <- xx3 * exp(-cumhaz)* (1- exp(-xx1))/ xx1 > # They might not be exactly equal, since the C code tracks changes in the > # rate tables that occur -within- an interval. So try for 6 digits > all.equal(round(integral,3), round(xx2,3)) [1] TRUE > > # Cut off the bottom of the table, instead of the side > temp.age <- tcut(temp2-temp1, floor(c(-1, (18:27 * 365.24))), + labels=c('0-18', paste(18:26, 19:27, sep='-'))) > > py4 <- eval(py3$call) > all.equal(py4$pyear, py3$pyear[1:10,]) [1] TRUE > all.equal(py4$expect, py3$expect[1:10,]) [1] TRUE > > > rm(temp.age, integral, xx1, xx2, xx3, cumhaz, py1, py2, py3, py4) > rm(temp1, temp2, temp.yr, temp.time, xx) > > > > > # > # Create a "user defined" rate table, using the smoking data > # > temp <- scan("data.smoke")/100000 Read 224 items > temp <- matrix(temp, ncol=8, byrow=T) > smoke.rate <- c(rep(temp[,1],6), rep(temp[,2],6), temp[,3:8]) > attributes(smoke.rate) <- list( + dim=c(7,2,2,6,3), + dimnames=list(c("45-49","50-54","55-59","60-64","65-69","70-74","75-79"), + c("1-20", "21+"), + c("Male","Female"), + c("<1", "1-2", "3-5", "6-10", "11-15", ">=16"), + c("Never", "Current", "Former")), + dimid=c("age", "amount", "sex", "duration", "status"), + factor=c(0,1,1,0,1), + cutpoints=list(c(45,50,55,60,65,70,75),NULL, NULL, + c(0,1,3,6,11,16),NULL), + class='ratetable' + ) > rm(temp) > > is.ratetable(smoke.rate) [1] TRUE > summary(smoke.rate) Rate table with 5 dimensions: age ranges from 45 to 75; with 7 categories amount has levels of: 1-20 21+ sex has levels of: Male Female duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > print(smoke.rate) Rate table with dimension(s): age amount sex duration status , , Male, <1, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, <1, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 1-2, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 1-2, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 3-5, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 3-5, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 6-10, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 6-10, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, 11-15, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, 11-15, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, >=16, Never 1-20 21+ 45-49 0.001860 0.001860 50-54 0.002556 0.002556 55-59 0.004489 0.004489 60-64 0.007337 0.007337 65-69 0.011194 0.011194 70-74 0.020705 0.020705 75-79 0.036753 0.036753 , , Female, >=16, Never 1-20 21+ 45-49 0.001257 0.001257 50-54 0.001773 0.001773 55-59 0.002448 0.002448 60-64 0.003977 0.003977 65-69 0.006921 0.006921 70-74 0.011600 0.011600 75-79 0.020708 0.020708 , , Male, <1, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, <1, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 1-2, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 1-2, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 3-5, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 3-5, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 6-10, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 6-10, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, 11-15, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, 11-15, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, >=16, Current 1-20 21+ 45-49 0.004392 0.006100 50-54 0.007027 0.009156 55-59 0.011324 0.013910 60-64 0.019811 0.023934 65-69 0.030030 0.034979 70-74 0.046975 0.058613 75-79 0.073406 0.062500 , , Female, >=16, Current 1-20 21+ 45-49 0.002256 0.002779 50-54 0.003538 0.005179 55-59 0.005428 0.008235 60-64 0.008580 0.013029 65-69 0.014962 0.019349 70-74 0.020848 0.028270 75-79 0.033195 0.042731 , , Male, <1, Former 1-20 21+ 45-49 0.002344 0.004975 50-54 0.005447 0.004828 55-59 0.009452 0.017571 60-64 0.011777 0.015784 65-69 0.022449 0.023018 70-74 0.042553 0.031746 75-79 0.058824 0.040000 , , Female, <1, Former 1-20 21+ 45-49 0.000000 0.002667 50-54 0.001168 0.001387 55-59 0.002874 0.004736 60-64 0.010163 0.011148 65-69 0.011080 0.023196 70-74 0.006452 0.046358 75-79 0.000000 0.024096 , , Male, 1-2, Former 1-20 21+ 45-49 0.003658 0.002517 50-54 0.004310 0.005007 55-59 0.007288 0.009535 60-64 0.015892 0.018472 65-69 0.033803 0.037766 70-74 0.050830 0.029740 75-79 0.065972 0.044248 , , Female, 1-2, Former 1-20 21+ 45-49 0.004339 0.001027 50-54 0.000921 0.004668 55-59 0.002595 0.006020 60-64 0.003650 0.008621 65-69 0.013485 0.012500 70-74 0.014831 0.025172 75-79 0.025806 0.057692 , , Male, 3-5, Former 1-20 21+ 45-49 0.001596 0.004175 50-54 0.004548 0.004889 55-59 0.007294 0.010258 60-64 0.013165 0.017901 65-69 0.023749 0.020810 70-74 0.044850 0.037129 75-79 0.077075 0.073298 , , Female, 3-5, Former 1-20 21+ 45-49 0.002120 0.001786 50-54 0.002895 0.002701 55-59 0.003759 0.003610 60-64 0.006509 0.006996 65-69 0.012632 0.016880 70-74 0.012500 0.016873 75-79 0.025907 0.031250 , , Male, 6-10, Former 1-20 21+ 45-49 0.002169 0.001226 50-54 0.003497 0.004029 55-59 0.005902 0.007440 60-64 0.012669 0.012207 65-69 0.018202 0.027664 70-74 0.038887 0.039888 75-79 0.049451 0.063830 , , Female, 6-10, Former 1-20 21+ 45-49 0.001072 0.002247 50-54 0.002009 0.001902 55-59 0.001658 0.004545 60-64 0.004708 0.005417 65-69 0.008648 0.008287 70-74 0.011263 0.028487 75-79 0.039604 0.029787 , , Male, 11-15, Former 1-20 21+ 45-49 0.001674 0.001983 50-54 0.002140 0.003939 55-59 0.004473 0.006685 60-64 0.008756 0.011000 65-69 0.016691 0.022681 70-74 0.031843 0.032686 75-79 0.056180 0.076661 , , Female, 11-15, Former 1-20 21+ 45-49 0.001359 0.001421 50-54 0.001213 0.001168 55-59 0.002022 0.004122 60-64 0.005706 0.003731 65-69 0.005866 0.007979 70-74 0.010705 0.016212 75-79 0.016667 0.028037 , , Male, >=16, Former 1-20 21+ 45-49 0.001595 0.001934 50-54 0.002504 0.003543 55-59 0.004366 0.005378 60-64 0.007030 0.009933 65-69 0.011592 0.012307 70-74 0.021949 0.024689 75-79 0.041289 0.050481 , , Female, >=16, Former 1-20 21+ 45-49 0.000910 0.001388 50-54 0.001721 0.000830 55-59 0.002472 0.001821 60-64 0.003197 0.003564 65-69 0.006180 0.005815 70-74 0.012721 0.013634 75-79 0.018615 0.021954 > > summary(smoke.rate[1:3,,1,,]) #test subscripting Rate table with 4 dimensions: age ranges from 45 to 55; with 3 categories amount has levels of: 1-20 21+ duration ranges from 0 to 16; with 6 categories status has levels of: Never Current Former > > proc.time() user system elapsed 0.89 0.01 0.92