R Under development (unstable) (2024-02-13 r85898 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > # Test data set 1 for Fine-Gray regression > fdata <- data.frame(time =c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), + status=factor(c(1,2,0,1,0,0,2,1,0,0,2, 0,1 ,0), 0:2, + c("cen", "type1", "type2")), + x =c(5,4,3,1,2,1,1,2,2,4,6,1,2, 0), + id = 1:14) > test1 <- finegray(Surv(time, status) ~., fdata, count="fgcount") > test2 <- finegray(Surv(time, status) ~x, fdata, etype="type2") > > # When creating the censoring time distribution remember that > # censors happen after deaths, so the distribution does not drop until > # time 3+, 4+, 6+, 8+ and 9+ > csurv <- list(time=c(0, 3, 4, 6, 8, 9), + p = cumprod(c(1, 11/12, 8/10, 5/6, 3/4, 2/3))) > # > # For estimation of event type 1, the first subject of event type > # 2 will have weights of curve$p over (0,3], (3,4], (4,6], (6,8], (8,9] > # and (9,12]. All that really matters is the weight at times 1, 4, 5, > # and 10, however, which are the points at which events of type 1 happen > # > # The next subject of event type 2 occurs at time 5, and will have a > # weight of (9,12] /(4,5] = (5*4*2)/(7*5*3) = 8/21 at time 10. The last > # censor at time 6 has a weight of 2/3 at time 10. > > all.equal(test1$id, c(1, 2,2,2,2, 3:6, 7, 7, 8:11, 11, 12:14)) [1] TRUE > twt <- c(1, csurv$p[c(1,2,3,6)], 1,1,1, 1, 1, 5/12, 1,1,1, + 1, 1/2, 1,1,1) > all.equal(test1$fgwt, twt) [1] TRUE > #extra obs will end at times found in csurv$time, or max(time)=12 > all.equal(test1$fgstop[test1$fgcount>0], c(4,6,12, 12,12)) [1] TRUE > > # > # Verify the data reproduces a multi-state curve > # censoring times may be different in the two setups so only > # compare at the event times > sfit <- survfit(Surv(time, status) ~1, fdata) > sfit1<- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test1, weight=fgwt) > sfita<- sfit["type1"] > i1 <- sfita$n.event > 0 > i2 <- sfit1$n.event > 0 > all.equal(sfita$pstate[i1], 1- sfit1$surv[i2]) [1] TRUE > > sfitb <- sfit["type2"] > sfit2 <- survfit(Surv(fgstart, fgstop, fgstatus) ~1, test2, weight=fgwt) > i1 <- sfitb$n.event > 0 > i2 <- sfit2$n.event > 0 > all.equal(sfitb$pstate[i1], 1- sfit2$surv[i2]) [1] TRUE > > # Test strata. Make a single data set that has fdata for the first 19 > # rows, then fdata with outcomes switched for the second 19. It should > # reprise test1 and test2 in a single call. > fdata2 <- rbind(fdata, fdata) > fdata2$group <- rep(1:2, each=nrow(fdata)) > temp <- c(1,3,2)[as.numeric(fdata$status)] > fdata2$status[fdata2$group==2] <- factor(temp, 1:3, levels(fdata$status)) > test3 <- finegray(Surv(time, status) ~ .+ strata(group), fdata2) > vtemp <- c("fgstart", "fgstop", "fgstatus", "fgwt") > all.equal(test3[1:19, vtemp], test1[,vtemp]) [1] TRUE > all.equal(test3[20:38, vtemp], test2[,vtemp], check.attributes=FALSE) [1] TRUE > > # > # Test data set 2: use the larger MGUS data set > # Time is in months which leads to lots of ties > etime <- with(mgus2, ifelse(pstat==0, futime, ptime)) > event <- with(mgus2, ifelse(pstat==0, 2*death, 1)) > e2 <- factor(event, 0:2, c('censor', 'pcm', 'death')) > edata <- finegray(Surv(etime, e2) ~ sex + id, mgus2, etype="pcm") > > # Build G(t) = the KM of the censoring distribution > # An event at time x is not "at risk" for censoring at time x (Geskus 2011) > tt <- sort(unique(etime)) # all the times > ntime <- length(tt) > nrisk <- nevent <- double(ntime) > for (i in 1:ntime) { + nrisk[i] <- sum((etime > tt[i] & event >0) | (etime >= tt[i] & event==0)) + nevent[i] <- sum(etime == tt[i] & event==0) + } > G <- cumprod(1- nevent/nrisk) > > # The weight is defined as w(t)= G(t-)/G(s-) where s is the event time > # for a subject who experiences an endpoint other then the one of interest > type2 <- event[edata$id]==2 # the rows to be expanded > # These rows are copied over as is: endpoint 1 and censors > all(edata$fgstop[!type2] == etime[edata$id[!type2]]) [1] TRUE > all(edata$fgstart[!type2] ==0) [1] TRUE > all(edata$fgwt[!type2] ==1) [1] TRUE > > tdata <- edata[type2,] #expanded rows > first <- match(tdata$id, tdata$id) #points to the first row for each subject > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > all.equal(tdata$fgwt, Gwt/Gwt[first]) [1] TRUE > > # Test data 3, left truncation. > # Ties are assumed to be ordered as event, censor, entry > # H(t) = truncation distribution, and is calculated on a reverse time scale > # Since there is only one row per subject every obs is a "start" event. > # Per equation 5 and 6 of Geskus both G and H are right continuous functions > # (the value at t- epsilon is different than the value at t). > fdata <- data.frame(time1 = c(0,0,0,3,2,0,0,1,0,7,5, 0, 0, 0), + time2 = c(1,2,3,4,4,4,5,5,6,8,8, 9,10,12), + status= c(1,2,0,1,0,0,2,1,0,0,2, 0, 1 ,0), + x = c(5,4,3,1,2,1,1,2,2,4,6, 1, 2, 0), + id = 1:14) > tt <- sort(unique(c(fdata$time1, fdata$time2))) > ntime <- length(tt) > Grisk <- Gevent <- double(ntime) > Hrisk <- Hevent <- double(ntime) > for (i in 1:ntime) { + Grisk[i] <- with(fdata, sum((time2 > tt[i] & status >0 & time1 < tt[i]) | + (time2 >= tt[i] & status ==0 & time1 < tt[i]))) + Gevent[i]<- with(fdata, sum(time2 == tt[i] & status==0)) + Hrisk[i] <- with(fdata, sum(time2 > tt[i] & time1 <= tt[i])) + Hevent[i]<- with(fdata, sum(time1 == tt[i])) + } > G <- cumprod(1- Gevent/pmax(1,Grisk)) > G2 <- survfit(Surv(time1, time2 - .1*(status !=0), status==0) ~1, fdata) > all.equal(G2$surv[G2$n.event>0], G[Gevent>0]) [1] TRUE > > H <- double(ntime) > # The loop below uses the definition of equation 6 in Geskus > for (i in 1:ntime) + H[i] <- prod((1- Hevent/pmax(1, Hrisk))[-(i:1)]) > H2 <- rev(cumprod(rev(1 - Hevent/pmax(1, Hrisk)))) #alternate form > H3 <- survfit(Surv(-time2, -time1, rep(1,14)) ~1, fdata) # alternate 3 > # c(0,H) = H(t-), H2 = H(t-) already due to the time reversal > i2 <- sort(match(unique(fdata$time1), tt)) #time points in H3 > all.equal(c(0, H), c(H2, 1)) [1] TRUE > all.equal(H2[i2], rev(H3$surv)) [1] TRUE > > fg <- finegray(Surv(time1, time2, factor(status, 0:2)) ~ x, id=id, fdata) > stat2 <- !is.na(match(fg$id, fdata$id[fdata$status==2])) #expanded ids > all(fg$fgwt[!stat2] ==1) #ordinary rows are left alone [1] TRUE > all(fg$fgstart[!stat2] == fdata$time1[fdata$status !=2]) [1] TRUE > all(fg$fgstop[!stat2] == fdata$time2[fdata$status !=2]) [1] TRUE > > tdata <- fg[stat2,] > index <- match(tdata$id, tdata$id) # points to the first row for each > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) > all.equal(tdata$fgwt, Gwt*Hwt/(Gwt*Hwt)[index]) [1] TRUE > > # > # Test data 4: mgus2 data on age scale > # The answer is incorrect due to roundoff, but consistent > # > start <- mgus2$age # age in years > end <- start + etime/12 #etime in months > tt <- sort(unique(c(start, end))) # all the times > ntime <- length(tt) > Grisk <- Gevent <- double(ntime) > Hrisk <- Hevent <- double(ntime) > for (i in 1:ntime) { + Grisk[i] <- sum(((end > tt[i] & event >0) | (end >= tt[i] & event==0)) & + (tt[i] > start)) + Gevent[i] <- sum(end == tt[i] & event==0) + Hrisk[i] <- sum(start <= tt[i] & end > tt[i]) + Hevent[i] <- sum(start == tt[i]) + } > G <- cumprod(1 - Gevent/pmax(1, Grisk)) # pmax to avoid 0/0 > H <- rev(cumprod(rev(1-Hevent/pmax(1,Hrisk)))) > H <- c(H[-1], 1) #make it right continuous > > wdata <- finegray(Surv(start, end, e2) ~ ., id=id, mgus2, timefix=FALSE) > type2 <- event[wdata$id]==2 # the rows to be expanded > tdata <- wdata[type2,] > first <- match(tdata$id, tdata$id) > > Gwt <- c(1, G)[match(tdata$fgstop, tt)] # G(t-) > Hwt <- c(0, H)[match(tdata$fgstop, tt)] # H(t-) > all.equal(tdata$fgwt, (Gwt/Gwt[first]) * (Hwt / Hwt[first])) [1] TRUE > > > proc.time() user system elapsed 1.04 0.09 1.12