R Under development (unstable) (2024-02-13 r85898 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survival) > aeq <- function(x, y) all.equal(as.vector(x), as.vector(y)) > # > # Compute the hazard functions for a multi-state Cox model > # > coxhaz <- function(y, id, risk, wt, expm=TRUE) { + # y should be a multi-state survival + if (!inherits(y, "Surv") || attr(y, "type") != "mcounting") + stop("invalid response") + + n <- nrow(y) + if (missing(id) || length(id) !=n) stop("invalid id") + + if (missing(wt)) wt <- rep(1.0, n) + else if (length(wt) !=n || any(wt <=0)) stop("invalid wt") + + # get the current state, and the list of transtions + # transitions to censor don't count + mcheck <- survcheck(y~1, id= id) + states <- mcheck$states + nstate <- length(states) + istate <- mcheck$istate + + event <- y[,3] > 0 + temp <- attr(y, 'states')[y[event,3]] + tmat <- table(y[event,2], from=istate[event], to=temp) + tmat2 <- tapply(wt[event], list(y[event,2], from=mcheck$istate[event], + to=temp), sum) + tmat2 <- ifelse(is.na(tmat2), 0, tmat2) + + + # Hazards can be done one at a time. For each of them the risk + # weight vector for the subjects can be different. + # First organize the material as a 2 dim matrix + temp <- apply(tmat, 2:3, sum) # count of transtions + keep <- which(temp>0) + from <- states[row(temp)[keep]] + hlab <- outer(match(rownames(temp), states), + match(colnames(temp), states), paste, sep=':')[keep] + nhaz <- length(keep) + nevent <- matrix(tmat2, nrow(tmat2))[,keep] + dtime <- sort(unique(y[event,2])) + ntime <- length(dtime) + dimnames(nevent) <- list(NULL, hlab) + aindex <- cbind(as.numeric(substring(hlab,1,1)), + as.numeric(substring(hlab,3,3))) + + if (missing(risk)) risk <- matrix(1, nrow=n, ncol=nhaz) + if (!is.matrix(risk) || nrow(risk) != n || ncol(risk) != nhaz) + stop("invalid risk matrix") + risk <- risk * wt + + # get the weighted at risk at each time + wtrisk <- matrix(, length(dtime), nhaz) + statematch <- outer(istate, from, function(x, y) x==y) + risk <- ifelse(statematch, risk, 0) + for (i in 1:ntime) { + atrisk <- (y[,1]< dtime[i] & y[,2] >= dtime[i]) + wtrisk[i,] <- colSums(risk[atrisk,, drop=FALSE]) + } + + haz <- nevent/ifelse(wtrisk==0, 1, wtrisk) # avoid 0/0 + chaz<- apply(haz, 2, cumsum) + + # compute the probability in state, with p(0)= 1,0, .. + pstate <- matrix(0, ntime+1, nstate) + pstate[1,1] <- 1 + for (i in 1:ntime) { + tmat <- matrix(0, nstate, nstate) + tmat[aindex] <- haz[i,] + if (expm) { + diag(tmat) <- -rowSums(tmat) + pstate[i+1,] <- pstate[i,] %*% as.matrix(Matrix::expm(tmat)) + } else { + diag(tmat) <- 1-rowSums(tmat) + pstate[i+1,] <- pstate[i,] %*% tmat + } + } + + list(time=dtime, nrisk=wtrisk, nevent=nevent, + haz=haz, cumhaz=chaz, states=states, pstate= pstate[-1,]) + } > > mtest <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5), + t1= c(0, 4, 9, 0, 2, 0, 2, 8, 1, 3), + t2= c(4, 9, 10, 5, 9, 2, 8, 9, 3, 11), + state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0), + x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2)) > mtest$state <- factor(mtest$state, 0:3, c("censor", "a", "b", "c")) > > # True results > # > #time at risk events > # entry a b c > # > #2 1245 4 -> a > #3 1235 4 5 -> b > #4 123 4 5 1 -> a > #5 23 14 5 2 -> b, exits > #8 3 14 5 4 -> c > #9 3 1 5 4 1->b, 3->c & exit, 4 censored > #10 15 1->a, exit > #11 5 censor > > # with all coefficients =0 > check1 <- with(mtest, coxhaz(Surv(t1, t2, state), id)) > fit1 <- survfit(Surv(t1, t2, state) ~1, mtest, id=id) > aeq(check1$cumhaz, fit1$cumhaz[match(check1$time, fit1$time),]) [1] TRUE > > dummy <- data.frame(x=1:2) > cox0 <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id) > cfit0 <- survfit(cox0, newdata=dummy) > indx <- match(check1$time, cfit0$time) > aeq(check1$cumhaz, cfit0$cumhaz[indx,1,]) [1] TRUE > aeq(check1$cumhaz, cfit0$cumhaz[indx,2,]) [1] TRUE > aeq(check1$pstate, cfit0$pstate[indx,1,]) [1] TRUE > > # a fixed coefficient > mfit <- coxph(Surv(t1, t2, state) ~x, iter=0, mtest, id=id, + init= log(1:6)) > msurv <- survfit(mfit, newdata=list(x=0:1)) > mrisk <- exp(outer(mtest$x, log(1:6), '*')) # hazards for each transition > check2 <- with(mtest, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk)) > aeq(check2$cumhaz, msurv$cumhaz[indx,1,]) [1] TRUE > aeq(check2$pstate, msurv$pstate[indx,1,]) [1] TRUE > > # a different predicted x multiplies the risk weights > # now use exp(x - target) as the risk score > mrisk2 <- mrisk %*% diag(1/(1:6)) > check2b <- with(mtest, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk2)) > aeq(check2b$cumhaz, msurv$cumhaz[indx,2,]) [1] TRUE > aeq(check2b$pstate, msurv$pstate[indx,2,]) [1] TRUE > > # since pstate depends only on the hazards and p(0), if the hazards are > # right I don't have to check pstate for every subcase > > if (FALSE) { + # this graph is very useful + temp <- survcheck(Surv(t1, t2, state) ~1, mtest, id=id) + plot(c(0,11), c(1,5.1), type='n', xlab="Time", ylab= "Subject") + with(mtest, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) + event <- subset(mtest, state!='censor') + text(event$t2, event$id+.2, as.character(event$state)) + } > > > # slight change, add a few censored subjects > # all the events happen on even numbered days > test2 <- data.frame(id= c(1, 1, 1, 2, 3, 4, 4, 4, 5, 5, + 6, 7, 8, 9), + t1= c(0, 8, 18, 0, 4, 0, 4, 16, 2, 6, + 0, 0, 7, 8), + t2= c(8, 18, 20, 10, 18, 4, 16, 18, 6, 22, + 5, 10, 10, 15), + state= c(1, 2, 1, 2, 3, 1, 3, 0, 2, 0,0,0,0,0), + x = c(0, 0, 0, 1, 1, 0, 0, 0, 2, 2, 1, 1, 2, 0)) > test2$state <- factor(test2$state, 0:3, c("censor", "a", "b", "c")) > > if (FALSE) { + # this graph is very useful when debugging + temp <- survcheck(Surv(t1, t2, state) ~1, test2, id=id) + plot(c(0,22), c(1,9.1), type='n', xlab="Time", ylab= "Subject") + with(test2, segments(t1+.1, id, t2, id, col=as.numeric(temp$istate))) + event <- subset(test2, state!='censor') + text(event$t2, event$id+.2, as.character(event$state)) + } > > # s0 to a, cumhaz of 1/6 (t=4) + 1/5 (t=8) > # b to a, cumhaz of 1/2 at 20 > # s0 to b, cumhaz of 1/5 at 6, +1/5 at 10 > # a to b, cumhaz of 1/1 at 18 > # s0 to c, cumhaz of 1/1 at 18 > # a to c, cumhaz of 1/2 at 16 > time2 <- c(4,5,6,8,10,15,16,18,20, 22) > chaz2 <- matrix(0, nrow=10, ncol=6, + dimnames=list(time2, c("1:2", "1:3", "1:3", "2:3", "1:4", "2:4"))) > chaz2['4',1] <- 1/6; chaz2['8',1] <- 1/5 > chaz2['20',2] <- 1/2 > chaz2['6', 3] <- 1/5; chaz2['10', 3] <- 1/5 > chaz2['18',4:5] <- 1 > chaz2['16', 6] <- 1/2 > chaz2 <- apply(chaz2, 2, cumsum) > > > cox3 <- coxph(Surv(t1, t2, state) ~x, id=id, test2, iter=0) # no weights > csurv3 <- survfit(cox3, newdata=data.frame(x=0:1)) > aeq(csurv3$time, time2) [1] TRUE > aeq(csurv3$cumhaz[,1,], chaz2) [1] TRUE > aeq(csurv3$cumhaz[,2,], chaz2) [1] TRUE > check3 <- with(test2, coxhaz(Surv(t1, t2, state), id=id)) > indx3 <- match(check3$time, csurv3$time) > aeq(check3$cumhaz, chaz2[indx3,]) # a check on the coxhaz function above [1] TRUE > aeq(check3$pstate, csurv3$pstate[indx3,1,]) [1] TRUE > > cox4 <- coxph(Surv(t1,t2, state) ~ x, id=id, test2, + init=log(1:6), iter=0) > csurv4 <- survfit(cox4, newdata=data.frame(x=0:1)) > mrisk4 <- exp(outer(test2$x, log(1:6), '*')) # hazards for each transition > check4 <- with(test2, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk4)) > aeq(check4$cumhaz, csurv4$cumhaz[indx3,1,]) [1] TRUE > aeq(check4$pstate, csurv4$pstate[indx3,1,]) [1] TRUE > aeq(csurv4$cumhaz[,2,], csurv4$cumhaz[,1,] %*% diag(1:6)) [1] TRUE > > > # Check the stype=1 option > csurv4b <- survfit(cox4, newdata= data.frame(x=0:1), stype=1) > check4b <- with(test2, coxhaz(Surv(t1, t2, state), id=id, risk=mrisk4, + expm=FALSE)) > aeq(check4b$cumhaz, csurv4b$cumhaz[indx3,1,]) [1] TRUE > aeq(check4b$pstate, csurv4b$pstate[indx3,1,]) [1] TRUE > > proc.time() user system elapsed 1.15 0.06 1.21