options(na.action=na.exclude) # preserve missings options(contrasts=c('contr.treatment', 'contr.poly')) #ensure constrast type library(survival) # Tests of expected survival aeq <- function(x,y) all.equal(as.vector(x), as.vector(y)) # # This makes several scripts easier # mdy.Date <- function(m, d, y) { y <- ifelse(y<100, y+1900, y) as.Date(paste(m,d,y, sep='/'), "%m/%d/%Y") } # This function takes a single subject and walks down the rate table # Input: the vector of starting points, futime, and a ratetable # Output: the full history of walking through said table. Let n= #unique # rates that were used # cell = n by #dims of the table: index of the table cell # days = time spent in cell # hazard= accumulated hazard = days * rate # This does not do date or factor conversions -- start has to be numeric # ratewalk <- function(start, futime, ratetable=survexp.us) { if (!is.ratetable(ratetable)) stop("Bad rate table") ratedim <- dim(ratetable) nvar <- length(ratedim) if (length(start) != nvar) stop("Wrong length for start") if (futime <=0) stop("Invalid futime") attR <- attributes(ratetable) discrete <- (attR$type ==1) #discrete categories maxn <- sum(!discrete)*prod(ratedim[!discrete]) #most cells you can hit cell <- matrix(0, nrow=maxn, ncol=nvar) days <- hazard <- double(maxn) eps <- 1e-8 #Avoid round off error n <- 0 while (futime >0) { n <- n+1 #what cell am I in? # Note that at the edges of the rate table, we use the edge: if # it only goes up the the year 2000, year 2000 is used for any # dates beyond. This effectively eliminates one boundary cell[n,discrete] <- start[discrete] edge <- futime #time to nearest edge, or finish for (j in which(!discrete)) { indx <- sum(start[j] >= attR$cutpoints[[j]]-eps) cell[n, j] <- max(1, indx) if (indx < ratedim[j]) edge <- min(edge, (attR$cutpoints[[j]])[indx+1] - start[j]) } days[n] <- edge #this many days in the cell # using a matrix as a subscript is so handy sometimes hazard[n] <- edge * (as.matrix(ratetable))[cell[n,,drop=F]] futime <- futime - edge #amount of time yet to account for start[!discrete] <- start[!discrete] + edge #walk forward in time } list(cell=cell[1:n,], days=days[1:n], hazard=hazard[1:n]) } # Simple test of ratewalk: 20 years old, start on 7Sep 1960 # 116 days at the 1960, 20 year old male rate, through the end of the day # on 12/31/1960, then 84 days at the 1961 rate. # The decennial q for 1960 males is .00169. zz <- ratewalk(c(20.4*365.25, 1, as.Date("1960/09/07")), 200) all.equal(zz$hazard[1], -(116/365.25)*log(1-.00169)) all.equal(zz$days, c(116,84)) # # Simple case 1: a single male subject, born 1/1/36 and entered on study 1/2/55 # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.Date(1,1,36) temp2 <- mdy.Date(1,2,55) exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), rmap= list(year=temp2, age=(temp2-temp1), sex=1, race='white')) t12 <- as.numeric(temp2-temp1) # difftimes are a PITA h1 <- ratewalk(c(t12, 1, 1, temp2), 366, survexp.usr) h2 <- ratewalk(c(t12, 1, 1, temp2), 1827, survexp.usr) h3 <- ratewalk(c(t12, 1, 1, temp2), 3653, survexp.usr) h4 <- ratewalk(c(t12, 1, 1, temp2), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) # pyears should give the same result dummy <- data.frame(time = 4383, year=temp2, sex = 1, age= temp2-temp1, race="white") cuts <- tcut(0, c(0, 366, 1827, 3653, 4383)) exp1c <- pyears(time ~ cuts, data=dummy, ratetable=survexp.usr) aeq(exp1$surv, exp(-cumsum(exp1c$expected))) # Just a little harder: # Born 3/1/25 and entered the study on 6/10/55. The code creates shifted # dates to align with US rate tables - entry is 59 days earlier (days from # 1/1/1925 to 3/1/1925). # temp1 <- mdy.Date(3,1,25) temp2 <- mdy.Date(6,10,55) exp1 <- survexp(~1, ratetable=survexp.usr,times=c(366, 1827, 3653, 4383), rmap= list(year=temp2, age=(temp2-temp1), sex=2, race='black')) tyear <- temp2 - 59 t12 <- as.numeric(temp2-temp1) h1 <- ratewalk(c(t12, 2, 2, tyear), 366, survexp.usr) h2 <- ratewalk(c(t12, 2, 2, tyear), 1827, survexp.usr) h3 <- ratewalk(c(t12, 2, 2, tyear), 3653, survexp.usr) h4 <- ratewalk(c(t12, 2, 2, tyear), 4383, survexp.usr) aeq(-log(exp1$surv), c(sum(h1$hazard), sum(h2$hazard), sum(h3$hazard), sum(h4$hazard))) # # Simple case 2: make sure that the averages are correct, for Ederer method # # Compute the 1, 5, 10 and 12 year expected survival temp1 <- mdy.Date(1:6,6:11,1890:1895) temp2 <- mdy.Date(6:1,11:6,c(55:50)) temp3 <- c(1,2,1,2,1,2) age <- temp2 - temp1 exp1 <- survexp(~1, rmap= list(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383)) exp2 <- survexp(~ I(1:6), rmap= list(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383)) exp3 <- exp2$surv for (i in 1:length(temp1)){ exp3[,i] <- survexp(~ 1, rmap = list(year=temp2, age=(temp2-temp1), sex=temp3), times=c(366, 1827, 3653, 4383), subset=i)$surv } print(aeq(exp2$surv, exp3)) print(all.equal(exp1$surv, apply(exp2$surv, 1, mean))) # They agree, but are they right? # for (i in 1:length(temp1)) { offset <- as.numeric(temp1[i] - mdy.Date(1,1, 1889+i)) tyear = temp2[i] - offset haz1 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 366) haz2 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 1827) haz3 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 3653) haz4 <- ratewalk(c(as.numeric(temp2-temp1)[i], temp3[i], tyear), 4383) print(aeq(-log(exp2$surv[,i]), c(sum(haz1$hazard), sum(haz2$hazard), sum(haz3$hazard), sum(haz4$hazard)))) } # # Check that adding more time points doesn't change things # exp4 <- survexp(~ I(1:6), rmap= list(year=temp2, age=(temp2-temp1), sex=temp3), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp4$surv[match(exp2$time, exp4$time),], exp2$surv) exp4 <- survexp(~1, rmap = list(year=temp2, age=(temp2-temp1), sex=temp3), times=sort(c(366, 1827, 3653, 4383, 30*(1:100)))) aeq(exp1$surv, exp4$surv[match(exp1$time, exp4$time, nomatch=0)]) # # Now test Hakulinen's method, assuming an analysis date of 3/1/57 # futime <- mdy.Date(3,1,57) - temp2 xtime <- sort(c(futime, 30, 60, 185, 365)) exp1 <- survexp(futime ~ 1, rmap= list(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=F) exp2 <- survexp(~ I(1:6), times=futime, rmap= list(year=temp2, age=(temp2-temp1), sex=1)) wt <- rep(1,6) con <- double(6) for (i in 1:6) { con[i] <- sum(exp2$surv[i,i:6])/sum(wt[i:6]) wt <- exp2$surv[i,] } exp1$surv[match(futime, xtime)] aeq(exp1$surv[match(futime, xtime)], cumprod(con)) # # Now for the conditional method # exp1 <- survexp(futime ~ 1, rmap= list(year=temp2, age=(temp2-temp1), sex=1), times=xtime, conditional=T) cond <- exp2$surv for (i in 6:2) cond[i,] <- (cond[i,]/cond[i-1,]) #conditional survival for (i in 1:6) con[i] <- exp(mean(log(cond[i, i:6]))) all.equal(exp1$surv[match(futime, xtime)], cumprod(con)) cumprod(con) # # Test out expected survival, when the parent pop is another Cox model # test1 <- data.frame(time= c(4, 3,1,1,2,2,3), status=c(1,NA,1,0,1,1,0), x= c(0, 2,1,1,1,0,0)) fit <- coxph(Surv(time, status) ~x, test1, method='breslow') dummy <- data.frame(time=c(.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5), status=c(1,0,1,0,1,0,1,1,1), x=(-4:4)/2) efit <- survexp(time ~ 1, rmap= list(x=x), dummy, ratetable=fit, cohort=F) # # Now, compare to the true answer, which is known to us # ss <- exp(fit$coef) haz <- c( 1/(3*ss+3), 2/(ss+3), 1) #truth at time 0,1,2,4+ chaz <- cumsum(c(0,haz)) chaz2 <- chaz[c(1,2,2,3,3,3,3,4,4)] risk <- exp(fit$coef*dummy$x) efit2 <- exp(-risk*chaz2) all.equal(as.vector(efit), as.vector(efit2)) #ignore mismatched name attrib # # Now test the direct-adjusted curve (Ederer) # efit <- survexp( ~ 1, dummy, ratetable=fit, se=F) direct <- survfit(fit, newdata=dummy, censor=FALSE)$surv chaz <- chaz[-1] #drop time 0 d2 <- exp(outer(-chaz, risk)) all.equal(as.vector(direct), as.vector(d2)) #this tests survfit all.equal(as.vector(efit$surv), as.vector(apply(direct,1,mean))) #direct # Check out the "times" arg of survexp efit2 <- survexp( ~1, dummy, ratetable=fit, se=F, times=c(.5, 2, 3.5,6)) aeq(efit2$surv, c(1, efit$surv[c(2,2,3)])) # # Now test out the Hakulinen method (Bonsel's method) # By construction, we have a large correlation between x and censoring # # In theory, hak1 and hak2 would be the same. In practice, like a KM and # F-H, they differ when n is small. # efit <- survexp( time ~1, dummy, ratetable=fit, se=F) surv <- wt <- rep(1,9) tt <- c(1,2,4) hak1 <- hak2 <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 hak1 <- c(hak1, exp(-sum(haz[i]*risk*surv*wt)/sum(surv*wt))) hak2 <- c(hak2, sum(exp(-haz[i]*risk)*surv*wt)/sum(surv*wt)) surv <- surv * exp(-haz[i]*risk) } all.equal(as.vector(efit$surv), as.vector(cumprod(hak1))) # # Now do the conditional estimate # efit <- survexp( time ~ 1, dummy, ratetable=fit, se=F, conditional=T) wt <- rep(1,9) cond <- NULL for (i in 1:3) { wt[dummy$time < tt[i]] <- 0 cond <- c(cond, exp(-sum(haz[i]*risk*wt)/sum(wt))) } all.equal(as.vector(efit$surv), as.vector(cumprod(cond)))