library(survey) data(api) dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) ## regression estimator of total, three ways pop<-data.frame(enroll=sum(apipop$enroll, na.rm=TRUE)) npop <- sum(!is.na(apipop$enroll)) api.reg <- svyglm(api.stu~enroll, design=dstrat) a <- predict(api.reg, newdata=pop, total=npop) b <- svytotal(~api.stu, calibrate(dstrat, ~enroll, pop=c(npop, pop$enroll))) all.equal(as.vector(coef(a)),as.vector(coef(b))) all.equal(as.vector(SE(a)), as.vector(SE(b))) if(!is.null(getOption("DEBUG"))){ ## uses 6194x6194 matrix d <- predict(api.reg, newdata=na.omit(apipop[,"enroll",drop=FALSE])) all.equal(as.vector(coef(a)), as.vector(sum(coef(d)))) all.equal(as.vector(SE(a)), as.vector(sqrt(sum(vcov(d))))) } ## classical ratio estimator, four ways. api.reg2 <- svyglm(api.stu~enroll-1, design=dstrat, family=quasi(link="identity", var="mu")) a <- predict(api.reg2, newdata=pop, total=npop) b <- svytotal(~api.stu, calibrate(dstrat, ~enroll-1, pop= pop$enroll, variance=2)) e <- predict(svyratio(~api.stu, ~enroll, dstrat),total=pop$enroll) all.equal(as.vector(coef(a)),as.vector(coef(b))) all.equal(as.vector(SE(a)), as.vector(SE(b))) all.equal(as.vector(coef(a)),as.vector(e$total)) all.equal(as.vector(SE(a)), as.vector(e$se)) if(!is.null(getOption("DEBUG"))){## uses 6194x6194 matrix d <- predict(api.reg2, newdata=na.omit(apipop[,"enroll",drop=FALSE])) all.equal(as.vector(coef(a)), as.vector(sum(coef(d)))) all.equal(as.vector(SE(a)), as.vector(sqrt(sum(vcov(d))))) }