R Under development (unstable) (2024-03-19 r86153 ucrt) -- "Unsuffered Consequences" Copyright (C) 2024 The R Foundation for Statistical Computing Platform: x86_64-w64-mingw32/x64 R is free software and comes with ABSOLUTELY NO WARRANTY. You are welcome to redistribute it under certain conditions. Type 'license()' or 'licence()' for distribution details. R is a collaborative project with many contributors. Type 'contributors()' for more information and 'citation()' on how to cite R or R packages in publications. Type 'demo()' for some demos, 'help()' for on-line help, or 'help.start()' for an HTML browser interface to help. Type 'q()' to quit R. > library(survey) Loading required package: grid Loading required package: Matrix Loading required package: survival Attaching package: 'survey' The following object is masked from 'package:graphics': dotchart > options(survey.replicates.mse=TRUE) > example(api) api> library(survey) api> data(api) api> mean(apipop$api00) [1] 664.7126 api> sum(apipop$enroll, na.rm=TRUE) [1] 3811472 api> #stratified sample api> dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) api> summary(dstrat) Stratified Independent Sampling design dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02262 0.02262 0.03587 0.04014 0.05339 0.06623 Stratum Sizes: E H M obs 100 50 50 design.PSU 100 50 50 actual.PSU 100 50 50 Population stratum sizes (PSUs): E H M 4421 755 1018 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc" api> svymean(~api00, dstrat) mean SE api00 662.29 9.4089 api> svytotal(~enroll, dstrat, na.rm=TRUE) total SE enroll 3687178 114642 api> # one-stage cluster sample api> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) api> summary(dclus1) 1 - level Cluster Sampling design With (15) clusters. dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02954 0.02954 0.02954 0.02954 0.02954 0.02954 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, dclus1) mean SE api00 644.17 23.542 api> svytotal(~enroll, dclus1, na.rm=TRUE) total SE enroll 3404940 932235 api> # two-stage cluster sample api> dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2) api> summary(dclus2) 2 - level Cluster Sampling design With (40, 126) clusters. dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.003669 0.037743 0.052840 0.042390 0.052840 0.052840 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc1" "fpc2" api> svymean(~api00, dclus2) mean SE api00 670.81 30.099 api> svytotal(~enroll, dclus2, na.rm=TRUE) total SE enroll 2639273 799638 api> # two-stage `with replacement' api> dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2) api> summary(dclus2wr) 2 - level Cluster Sampling design (with replacement) With (40, 126) clusters. dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.003669 0.037743 0.052840 0.042390 0.052840 0.052840 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc1" "fpc2" api> svymean(~api00, dclus2wr) mean SE api00 670.81 30.712 api> svytotal(~enroll, dclus2wr, na.rm=TRUE) total SE enroll 2639273 820261 api> # convert to replicate weights api> rclus1<-as.svrepdesign(dclus1) api> summary(rclus1) Call: as.svrepdesign.default(dclus1) Unstratified cluster jacknife (JK1) with 15 replicates and MSE variances. Variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, rclus1) mean SE api00 644.17 26.335 api> svytotal(~enroll, rclus1, na.rm=TRUE) total SE enroll 3404940 932235 api> # post-stratify on school type api> pop.types<-xtabs(~stype, data=apipop) api> rclus1p<-postStratify(rclus1, ~stype, pop.types) api> dclus1p<-postStratify(dclus1, ~stype, pop.types) api> summary(dclus1p) 1 - level Cluster Sampling design With (15) clusters. dclus1p<-postStratify(dclus1, ~stype, pop.types) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.01854 0.03257 0.03257 0.03040 0.03257 0.03257 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> summary(rclus1p) Call: rclus1p<-postStratify(rclus1, ~stype, pop.types) Unstratified cluster jacknife (JK1) with 15 replicates and MSE variances. Variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, dclus1p) mean SE api00 642.31 23.921 api> svytotal(~enroll, dclus1p, na.rm=TRUE) total SE enroll 3680893 406293 api> svymean(~api00, rclus1p) mean SE api00 642.31 26.936 api> svytotal(~enroll, rclus1p, na.rm=TRUE) total SE enroll 3680893 473434 > > options(survey.replicates.mse=FALSE) > example(api) api> library(survey) api> data(api) api> mean(apipop$api00) [1] 664.7126 api> sum(apipop$enroll, na.rm=TRUE) [1] 3811472 api> #stratified sample api> dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) api> summary(dstrat) Stratified Independent Sampling design dstrat<-svydesign(id=~1,strata=~stype, weights=~pw, data=apistrat, fpc=~fpc) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02262 0.02262 0.03587 0.04014 0.05339 0.06623 Stratum Sizes: E H M obs 100 50 50 design.PSU 100 50 50 actual.PSU 100 50 50 Population stratum sizes (PSUs): E H M 4421 755 1018 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc" api> svymean(~api00, dstrat) mean SE api00 662.29 9.4089 api> svytotal(~enroll, dstrat, na.rm=TRUE) total SE enroll 3687178 114642 api> # one-stage cluster sample api> dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) api> summary(dclus1) 1 - level Cluster Sampling design With (15) clusters. dclus1<-svydesign(id=~dnum, weights=~pw, data=apiclus1, fpc=~fpc) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.02954 0.02954 0.02954 0.02954 0.02954 0.02954 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, dclus1) mean SE api00 644.17 23.542 api> svytotal(~enroll, dclus1, na.rm=TRUE) total SE enroll 3404940 932235 api> # two-stage cluster sample api> dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2) api> summary(dclus2) 2 - level Cluster Sampling design With (40, 126) clusters. dclus2<-svydesign(id=~dnum+snum, fpc=~fpc1+fpc2, data=apiclus2) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.003669 0.037743 0.052840 0.042390 0.052840 0.052840 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc1" "fpc2" api> svymean(~api00, dclus2) mean SE api00 670.81 30.099 api> svytotal(~enroll, dclus2, na.rm=TRUE) total SE enroll 2639273 799638 api> # two-stage `with replacement' api> dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2) api> summary(dclus2wr) 2 - level Cluster Sampling design (with replacement) With (40, 126) clusters. dclus2wr<-svydesign(id=~dnum+snum, weights=~pw, data=apiclus2) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.003669 0.037743 0.052840 0.042390 0.052840 0.052840 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "pw" "fpc1" "fpc2" api> svymean(~api00, dclus2wr) mean SE api00 670.81 30.712 api> svytotal(~enroll, dclus2wr, na.rm=TRUE) total SE enroll 2639273 820261 api> # convert to replicate weights api> rclus1<-as.svrepdesign(dclus1) api> summary(rclus1) Call: as.svrepdesign.default(dclus1) Unstratified cluster jacknife (JK1) with 15 replicates. Variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, rclus1) mean SE api00 644.17 26.329 api> svytotal(~enroll, rclus1, na.rm=TRUE) total SE enroll 3404940 932235 api> # post-stratify on school type api> pop.types<-xtabs(~stype, data=apipop) api> rclus1p<-postStratify(rclus1, ~stype, pop.types) api> dclus1p<-postStratify(dclus1, ~stype, pop.types) api> summary(dclus1p) 1 - level Cluster Sampling design With (15) clusters. dclus1p<-postStratify(dclus1, ~stype, pop.types) Probabilities: Min. 1st Qu. Median Mean 3rd Qu. Max. 0.01854 0.03257 0.03257 0.03040 0.03257 0.03257 Population size (PSUs): 757 Data variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> summary(rclus1p) Call: rclus1p<-postStratify(rclus1, ~stype, pop.types) Unstratified cluster jacknife (JK1) with 15 replicates. Variables: [1] "cds" "stype" "name" "sname" "snum" "dname" [7] "dnum" "cname" "cnum" "flag" "pcttest" "api00" [13] "api99" "target" "growth" "sch.wide" "comp.imp" "both" [19] "awards" "meals" "ell" "yr.rnd" "mobility" "acs.k3" [25] "acs.46" "acs.core" "pct.resp" "not.hsg" "hsg" "some.col" [31] "col.grad" "grad.sch" "avg.ed" "full" "emer" "enroll" [37] "api.stu" "fpc" "pw" api> svymean(~api00, dclus1p) mean SE api00 642.31 23.921 api> svytotal(~enroll, dclus1p, na.rm=TRUE) total SE enroll 3680893 406293 api> svymean(~api00, rclus1p) mean SE api00 642.31 26.934 api> svytotal(~enroll, rclus1p, na.rm=TRUE) total SE enroll 3680893 473431 > > proc.time() user system elapsed 1.92 0.29 2.21