### Spatial interaction functions for twinstim() myexpectation <- function (siaf, intrfr, intrderivr, pargrid, type = 1, ...) { ## check analytical intrfr specification against numerical approximation if (!missing(intrfr)) apply(pargrid, 1, function (pars) expect_silent(capture.output( polyCub::checkintrfr(intrfr, siaf$f, pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)) ))) ## also check intrfr for deriv if (!missing(intrderivr)) for (paridx in seq_along(intrderivr)) apply(pargrid, 1, function (pars) expect_silent(capture.output( polyCub::checkintrfr(intrderivr[[paridx]], function (...) siaf$deriv(...)[,paridx], pars, type, center=c(0,0), rs=c(1,2,5,10,20,50)) ))) ## check deriv, F, Deriv against numerical approximations suppressMessages( checksiafres <- surveillance:::checksiaf(siaf, pargrid, type, ...) ) for (i in which(!sapply(checksiafres, is.null))) expect_true(unique(attr(checksiafres[[i]], "all.equal")), info = names(checksiafres)[i]) } ### test all pre-defined spatial interaction functions test_that("Gaussian 'F.adaptive' implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=0.05), # Deriv uses polyCub.SV pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Gaussian iso-C-implementation agrees with numerical approximation", myexpectation(siaf.gaussian(F.adaptive=FALSE, F.method="iso"), pargrid=as.matrix(log(c(0.5, 1, 3))), tolerance=0.0005, method="SV", nGQ=25)) test_that("Exponential implementation agrees with numerical approximation", myexpectation(siaf.exponential(engine = "R"), surveillance:::intrfr.exponential, list(surveillance:::intrfr.exponential.dlogsigma), pargrid=as.matrix(log(c(0.1, 1, 2))), tolerance=0.0005, method="SV", nGQ=25)) test_that("Power-law implementation agrees with numerical approximation", myexpectation(siaf.powerlaw(engine = "R"), surveillance:::intrfr.powerlaw, list(surveillance:::intrfr.powerlaw.dlogsigma, surveillance:::intrfr.powerlaw.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=13)) test_that("1-parameter power-law agrees with numerical approximations", myexpectation(siaf.powerlaw1(sigma = exp(0.5)), pargrid=as.matrix(log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=13)) test_that("Lagged power-law implementation agrees with numeric results", myexpectation(siaf.powerlawL(engine = "R"), surveillance:::intrfr.powerlawL, list(surveillance:::intrfr.powerlawL.dlogsigma, surveillance:::intrfr.powerlawL.dlogd), pargrid=cbind(-0.5,log(c(0.1,1,2))), tolerance=0.01, method="midpoint", dimyx=150)) test_that("Student implementation agrees with numerical approximation", myexpectation(siaf.student(engine = "R"), surveillance:::intrfr.student, list(surveillance:::intrfr.student.dlogsigma, surveillance:::intrfr.student.dlogd), pargrid=cbind(0.5,log(c(0.1,1,2))), tolerance=0.0005, method="SV", nGQ=5)) test_that("Step kernel implementation agrees with numerical approximation", myexpectation(siaf.step(c(0.1,0.5,1)), pargrid=-t(c(0.5,0.1,0.2)), tolerance=0.01, method="midpoint", dimyx=150)) ## ## plot the polygon on which F and Deriv are tested (to choose parameters) ## showsiaf <- function (siaf, pars) { ## plotpolyf(LETTERR, siaf$f, pars, print.args=list(split=c(1,1,2,1), more=TRUE)) ## plotpolyf(LETTERR, function (...) siaf$deriv(...)[,1], pars, print.args=list(split=c(2,1,2,1))) ## } ## showsiaf(siaf.student(), c(0.5,-0.5)) ### test new C-implementations of F and Deriv functions expect_equal_CnR <- function (siafgen, pargrid) { polydomain <- surveillance:::LETTERR siafR <- siafgen(engine = "R") siafC <- siafgen(engine = "C") ## check F resF <- apply(pargrid, 1, function (pars) c(C = siafC$F(polydomain, , pars), R = siafR$F(polydomain, , pars))) expect_equal(resF["C",], resF["R",], info = "C-version of F (current) vs. R-version of F (target)") ## check Deriv resDeriv <- apply(pargrid, 1, function (pars) c(siafC$Deriv(polydomain, , pars), siafR$Deriv(polydomain, , pars))) p <- siafR$npars expect_equal(resDeriv[seq_len(p),], resDeriv[p+seq_len(p),], info = "C-version of Deriv (current) vs. R-version of Deriv (target)") } test_that("siaf.exponential() engines agree", { expect_equal_CnR(siafgen = siaf.exponential, pargrid = matrix(log(c(0.1,1,2)))) }) test_that("siaf.powerlaw() engines agree", { expect_equal_CnR(siafgen = siaf.powerlaw, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.student() engines agree", { expect_equal_CnR(siafgen = siaf.student, pargrid = cbind(0.5,log(c(0.1,1,2)))) }) test_that("siaf.powerlawL() engines agree", { expect_equal_CnR(siafgen = siaf.powerlawL, pargrid = cbind(-0.5,log(c(0.1,1,2)))) })