## generate random adjacency matrix ## radjmat <- function (n) { ## adjmat <- matrix(0L, n, n, dimnames=list(letters[1:n],letters[1:n])) ## adjmat[lower.tri(adjmat)] <- sample(0:1, n*(n-1)/2, replace=TRUE) ## adjmat + t(adjmat) ## } ## set.seed(3); adjmat <- radjmat(5) adjmat <- structure( c(0L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 1L, 0L, 0L, 1L, 0L, 1L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) ## validated matrix of neighbourhood orders nbmat <- structure( c(0L, 2L, 1L, 3L, 2L, 2L, 0L, 1L, 1L, 2L, 1L, 1L, 0L, 2L, 1L, 3L, 1L, 2L, 0L, 1L, 2L, 2L, 1L, 1L, 0L), .Dim = c(5L, 5L), .Dimnames = rep.int(list(c("a", "b", "c", "d", "e")), 2L) ) test_that("nbOrder() returns the validated matrix", { expect_identical(nbOrder(adjmat), nbmat) }) test_that("zetaweights(.,maxlag=1,normalize=FALSE) is inverse of nbOrder", { expect_identical(zetaweights(nbmat, maxlag=1, normalize=FALSE), 1*adjmat) })