### ## Checking the provided reporting triangle ### data('salmAllOnset') # Control slot for the proposed algorithm with D=10 correction rangeTest <- 410:412 alpha <- 0.05 controlDelay <- list(range = rangeTest, b = 4, w = 3, pastAberrations = TRUE, mc.munu=10, mc.y=10, verbose = FALSE,populationOffset=FALSE, alpha = alpha, trend = TRUE, limit54=c(0,50), noPeriods = 10, pastWeeksNotIncluded = 26, delay=TRUE) test_that("The absence of reporting triangle throws an error",{ data("salmNewport") expect_error(bodaDelay(salmNewport, controlDelay),"You have to") }) test_that("The function spots uncorrect reporting triangles",{ stsFake <- salmAllOnset stsFake@control$reportingTriangle$n <- head(stsFake@control$reportingTriangle$n,n=10) expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle number") stsFake <- salmAllOnset stsFake@control$reportingTriangle$n[1,] <- stsFake@control$reportingTriangle$n[1,]/2 expect_error(bodaDelay(stsFake, controlDelay),"The reporting triangle is wrong") }) ### ## Data glm function ### epochAsDate <- TRUE epochStr <- "week" freq <- 52 b <- controlDelay$b w <- controlDelay$w populationOffset <- controlDelay$populationOffset noPeriods <- controlDelay$noPeriods verbose <- controlDelay$verbose reportingTriangle <- salmAllOnset@control$reportingTriangle timeTrend <- controlDelay$trend alpha <- controlDelay$alpha populationOffset <- controlDelay$populationOffset factorsBool <- controlDelay$factorsBool pastAberrations <- controlDelay$pastAberrations glmWarnings <- controlDelay$glmWarnings delay <- controlDelay$delay k <- controlDelay$k verbose <- controlDelay$verbose pastWeeksNotIncluded <- controlDelay$pastWeeksNotIncluded mc.munu <- controlDelay$mc.munu mc.y <- controlDelay$mc.y vectorOfDates <- as.Date(salmAllOnset@epoch, origin="1970-01-01") dayToConsider <- vectorOfDates[rangeTest[1]] observed <- salmAllOnset@observed population <- salmAllOnset@populationFrac dataGLM <- surveillance:::bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) delay <- FALSE dataGLMNoDelay <- surveillance:::bodaDelay.data.glm(dayToConsider=dayToConsider, b=b, freq=freq, epochAsDate=epochAsDate, epochStr=epochStr, vectorOfDates=vectorOfDates,w=w, noPeriods=noPeriods, observed=observed,population=population, verbose=verbose, pastWeeksNotIncluded=pastWeeksNotIncluded, reportingTriangle=reportingTriangle, delay=delay) test_that("the output is a data.frame",{ expect_inherits(dataGLM, "data.frame") expect_inherits(dataGLMNoDelay, "data.frame") }) test_that("the data frame contains all variables",{ expect_identical(names(dataGLM), c("response", "wtime","population","seasgroups","vectorOfDates","delay")) expect_identical(names(dataGLMNoDelay), c("response", "wtime","population","seasgroups","vectorOfDates")) }) test_that("the variables have the right class",{ expect_inherits(dataGLM$response, "numeric") expect_inherits(dataGLM$wtime, "numeric") expect_inherits(dataGLM$population, "numeric") expect_inherits(dataGLM$seasgroups, "factor") expect_inherits(dataGLM$vectorOfDates, "Date") expect_inherits(dataGLM$delay, "numeric") expect_inherits(dataGLMNoDelay$response, "numeric") expect_inherits(dataGLMNoDelay$wtime, "numeric") expect_inherits(dataGLMNoDelay$population, "numeric") expect_inherits(dataGLMNoDelay$seasgroups, "factor") expect_inherits(dataGLMNoDelay$vectorOfDates, "Date") }) test_that("the time variable is ok with diff 1",{ delayWtime <- as.numeric(levels(as.factor(dataGLM$wtime))) expect_equal(diff(delayWtime), rep(1,length(delayWtime)-1)) expect_equal(diff(dataGLMNoDelay$wtime), rep(1,length(dataGLMNoDelay$wtime)-1)) }) test_that("the factor variable has the right number of levels",{ expect_equal(nlevels(dataGLM$seasgroups), noPeriods) expect_equal(nlevels(dataGLMNoDelay$seasgroups), noPeriods) }) ### ## Fit glm function ### argumentsGLM <- list(dataGLM=dataGLM,reportingTriangle=reportingTriangle, timeTrend=timeTrend,alpha=alpha, populationOffset=populationOffset, factorsBool=TRUE,pastAberrations=FALSE, glmWarnings=glmWarnings, verbose=verbose,delay=delay,k=k,control=controlDelay) if(surveillance.options("allExamples") && require("INLA")) { # needs to be attached argumentsGLM$inferenceMethod <- "INLA" model <- do.call(surveillance:::bodaDelay.fitGLM, args=argumentsGLM) test_that("the fitGLM function gives the right class of output",{ expect_inherits(model, "inla") }) } argumentsGLM$inferenceMethod <- "asym" model <- do.call(surveillance:::bodaDelay.fitGLM, args=argumentsGLM) test_that("the fitGLM function gives the right class of output",{ expect_inherits(model, "negbin") }) ### ## formula function ### test_that("We get the right formula",{ expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime") expect_identical(surveillance:::formulaGLMDelay(timeBool=FALSE,factorsBool=FALSE), "response ~ 1") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE), "response ~ 1+wtime") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE), "response ~ 1+wtime+as.factor(seasgroups)") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=TRUE,delay=TRUE), "response ~ 1+wtime+as.factor(seasgroups)+as.factor(delay)") expect_identical(surveillance:::formulaGLMDelay(timeBool=TRUE,factorsBool=FALSE,outbreak=TRUE), "response ~ 1+wtime+f(outbreakOrNot,model='linear', prec.linear = 1)") })