set.seed(1) y <- rexp(100, 1) delta <- rbinom(100, size = 1, prob = 0.5) X <- data.frame(rnorm(100), rnorm(100)) landmark_times <- quantile(y, probs = c(0.25, 0.5, 0.75)) approx_times <- sort(c(unique(y), landmark_times)) ################################ ### no crossfit, no sample split ################################ f_hat <- list(f_hat = matrix(runif(300), nrow = 100, ncol = length(landmark_times))) fs_hat <- list(fs_hat = matrix(runif(300), nrow = 100, ncol = length(landmark_times))) S_hat <- list(S_hat = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 100), nrow = 100, ncol = length(approx_times), byrow = TRUE)) G_hat <- list(G_hat = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 100), nrow = 100, ncol = length(approx_times), byrow = TRUE)) folds <- rep(1, 100) ss_folds <- rep(1, 100) # accuracy output <- vim_accuracy(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_accuracy(). no xfit, no sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 3) }) # AUC output <- vim_AUC(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_AUC(). no xfit, no sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 3) }) # Brier score output <- vim_brier(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_brier(). no xfit, no sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 3) }) # R-squared output <- vim_rsquared(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_rsquared(). no xfit, no sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 3) }) # RMST MSE output <- vim_survival_time_mse(time = y, event = delta, approx_times = approx_times, restriction_time = landmark_times[3], f_hat = lapply(f_hat, function(x) x[,1]), fs_hat = lapply(fs_hat, function(x) x[,1]), S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_rmst_mse(). no xfit, no sample split", { expect_equal(dim(output)[1], 1) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 1) }) # C-index output <- vim_cindex(time = y, event = delta, approx_times = approx_times, restriction_time = landmark_times[3], f_hat = lapply(f_hat, function(x) x[,1]), fs_hat = lapply(fs_hat, function(x) x[,1]), S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = FALSE) test_that("vim_cindex(). no xfit, no sample split", { expect_equal(dim(output)[1], 1) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 1) }) ############################# ### no crossfit, sample split ############################# f_hat <- list(f_hat_1 = matrix(runif(150), nrow = 50, ncol = length(landmark_times)), f_hat_2 = matrix(runif(150), nrow = 50, ncol = length(landmark_times))) fs_hat <- list(fs_hat_1 = matrix(runif(150), nrow = 50, ncol = length(landmark_times)), fs_hat_2 = matrix(runif(150), nrow = 50, ncol = length(landmark_times))) S_hat <- list(S_hat_1 = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 50), nrow = 50, ncol = length(approx_times), byrow = TRUE), S_hat_2 = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 50), nrow = 50, ncol = length(approx_times), byrow = TRUE)) G_hat <- list(G_hat_1 = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 50), nrow = 50, ncol = length(approx_times), byrow = TRUE), G_hat_2 = matrix(rep(seq(1, 0.1, length.out = length(approx_times)), 50), nrow = 50, ncol = length(approx_times), byrow = TRUE)) folds <- c(rep(1, 50), rep(2, 50)) ss_folds <- c(rep(1, 50), rep(0, 50)) # accuracy output <- vim_accuracy(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_accuracy(). no xfit, sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) # AUC output <- vim_AUC(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_AUC(). no xfit, sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) # Brier score output <- vim_brier(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_brier(). no xfit, sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) # R-squared output <- vim_rsquared(time = y, event = delta, approx_times = approx_times, landmark_times = landmark_times, f_hat = f_hat, fs_hat = fs_hat, S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_rsquared(). no xfit, sample split", { expect_equal(dim(output)[1], 3) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) # RMST MSE output <- vim_survival_time_mse(time = y, event = delta, approx_times = approx_times, restriction_time = landmark_times[3], f_hat = lapply(f_hat, function(x) x[,1]), fs_hat = lapply(fs_hat, function(x) x[,1]), S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_rmst_mse(). no xfit, sample split", { expect_equal(dim(output)[1], 1) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) # C-index output <- vim_cindex(time = y, event = delta, approx_times = approx_times, restriction_time = landmark_times[3], f_hat = lapply(f_hat, function(x) x[,1]), fs_hat = lapply(fs_hat, function(x) x[,1]), S_hat = S_hat, G_hat = G_hat, cf_folds = folds, ss_folds = ss_folds, sample_split = TRUE) test_that("vim_cindex(). no xfit, sample split", { expect_equal(dim(output)[1], 1) expect_equal(dim(output)[2], 9) expect_equal(names(output), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness")) expect_equal(sum(is.na(output)), 0) }) ##################### ### main VIM function ##################### output <- vim(type = "AUC", time = y, event = delta, X = X, landmark_times = landmark_times, large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). AUC, xfit, sample split", { expect_equal(dim(output$result)[1], 3) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= max(landmark_times)], landmark_times)))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$large_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$large_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$small_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$small_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) }) output <- vim(type = "accuracy", time = y, event = delta, X = X, landmark_times = landmark_times, large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). accuracy, xfit, sample split", { expect_equal(dim(output$result)[1], 3) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= max(landmark_times)], landmark_times)))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$large_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$large_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$small_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$small_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) }) output <- vim(type = "Brier", time = y, event = delta, X = X, landmark_times = landmark_times, large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). Brier, xfit, sample split", { expect_equal(dim(output$result)[1], 3) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= max(landmark_times)], landmark_times)))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$large_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$large_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$small_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$small_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) }) output <- vim(type = "R-squared", time = y, event = delta, X = X, landmark_times = landmark_times, large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). R-squared, xfit, sample split", { expect_equal(dim(output$result)[1], 3) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("landmark_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= max(landmark_times)], landmark_times)))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$large_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$large_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(dim(output$small_oracle_preds$f_hat[[1]]), c(25, length(landmark_times))) expect_equal(dim(output$small_oracle_preds$f_hat_train[[1]]), c(75, length(landmark_times))) }) output <- vim(type = "survival_time_MSE", time = y, event = delta, X = X, restriction_time = landmark_times[3], large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), small_oracle_generator_control = list(SL.library = c("SL.mean", "SL.glm")), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). survival time MSE, xfit, sample split", { expect_equal(dim(output$result)[1], 1) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= landmark_times[3]], landmark_times[3])))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$large_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$large_oracle_preds$f_hat_train[[1]]), 75) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$small_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$small_oracle_preds$f_hat_train[[1]]), 75) }) output <- vim(type = "C-index", time = y, event = delta, X = X, restriction_time = landmark_times[3], large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(V = 2, params = list(mstop = c(20), nu = c(0.1), sigma = c(0.01), learner = c("glm"))), small_oracle_generator_control = list(V = 2, params = list(mstop = c(20), nu = c(0.1), sigma = c(0.01), learner = c("glm"))), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). C-index, xfit, sample split", { expect_equal(dim(output$result)[1], 1) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= landmark_times[3]], landmark_times[3])))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$large_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$large_oracle_preds$f_hat_train[[1]]), 75) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$small_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$small_oracle_preds$f_hat_train[[1]]), 75) }) output <- vim(type = "C-index", time = y, event = delta, X = X, restriction_time = landmark_times[3], large_feature_vector = 1:2, small_feature_vector = 1, conditional_surv_generator_control = list(SL.library = c("SL.mean", "SL.glm")), large_oracle_generator_control = list(V = 2, tuning = "CV", params = list(mstop = c(20), nu = c(0.1), sigma = c(0.01), learner = c("glm"))), small_oracle_generator_control = list(V = 2, tuning = "CV", params = list(mstop = c(20), nu = c(0.1), sigma = c(0.01), learner = c("glm"))), cf_fold_num = 2, sample_split = TRUE, scale_est = TRUE) test_that("vim(). C-index with CV, xfit, sample split", { expect_equal(dim(output$result)[1], 1) expect_equal(dim(output$result)[2], 12) expect_equal(names(output$result), c("restriction_time", "est", "var_est", "cil", "ciu", "cil_1sided", "p", "large_predictiveness", "small_predictiveness", "vim", "large_feature_vector", "small_feature_vector")) expect_equal(sum(is.na(output$result)), 0) expect_equal(names(output$folds), c("cf_folds", "ss_folds")) expect_equal(length(output$folds$cf_folds), 100) expect_equal(length(output$folds$ss_folds), 100) expect_equal(sort(unique(output$folds$cf_folds)), c(1,2,3,4)) expect_equal(sort(unique(output$folds$ss_folds)), c(0,1)) expect_equal(output$approx_times, sort(unique(c(y[delta == 1 & y <= landmark_times[3]], landmark_times[3])))) expect_equal(names(output$conditional_surv_preds), c("S_hat", "S_hat_train", "G_hat", "G_hat_train")) expect_equal(dim(output$conditional_surv_preds$S_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$S_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat[[1]]), c(25, length(output$approx_times))) expect_equal(dim(output$conditional_surv_preds$G_hat_train[[1]]), c(75, length(output$approx_times))) expect_equal(names(output$large_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$large_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$large_oracle_preds$f_hat_train[[1]]), 75) expect_equal(names(output$small_oracle_preds), c("f_hat", "f_hat_train")) expect_equal(length(output$small_oracle_preds$f_hat[[1]]), 25) expect_equal(length(output$small_oracle_preds$f_hat_train[[1]]), 75) })