context("Testing missing data") test_that("Between-subject design", { old <- options() on.exit(options(old)) options("superb.feedback" = 'none') library(ggplot2) dataToPlotBS <- GRD( BSFactors="grp(2)", SubjectsPerGroup = 1000, Effects = list("grp" = slope(10) ), Population=list(mean=100, stddev=15), Contaminant=list(scores = "NA", proportion=0.2) ) pltB <- superbPlot(dataToPlotBS, BSFactors = "grp", variables = "DV", statistic = "meanNArm", # because of missing data adjustments = list( purpose = "difference", decorrelation = "none" ) ) + coord_cartesian(ylim=c(85,115)) expect_equal( "ggplot" %in% class(pltB), TRUE) # restores default information options("superb.feedback" = c('design','warnings','summary')) }) test_that("Within-subject design", { old <- options() on.exit(options(old)) options("superb.feedback" = 'none') library(ggplot2) dataToPlotWS <- GRD( WSFactors="moment(2)", SubjectsPerGroup = 1000, Effects = list("moment" = slope(10) ), Population=list(mean=100, stddev=15, rho=0.80), Contaminant=list(scores = "NA", proportion=0.2) ) pltW <- superbPlot(dataToPlotWS, WSFactors = "moment(2)", variables = c("DV.1","DV.2"), statistic = "meanNArm", # because of missing data adjustments = list( purpose = "difference", decorrelation = "CA" ) ) + coord_cartesian(ylim=c(85,115)) expect_equal( "ggplot" %in% class(pltW), TRUE) # restores default information options("superb.feedback" = c('design','warnings','summary')) })